Scaling Limit of a Generalized Contact Process

被引:0
|
作者
Logan Chariker
Anna De Masi
Joel L. Lebowitz
Errico Presutti
机构
[1] Institute for Advanced Study,School of Natural Sciences
[2] Università degli Studi dell’Aquila,Departments of Mathematics and Physics
[3] Rutgers University,undefined
[4] Gran Sasso Science Institute,undefined
来源
Journal of Statistical Physics | 2023年 / 190卷
关键词
Neurons with discrete voltage; Integrate and fire; Generalized contact process; Mean field; Spatial dependence; Hydrodynamic limit;
D O I
暂无
中图分类号
学科分类号
摘要
We derive macroscopic equations for a generalized contact process that is inspired by a neuronal integrate and fire model on the lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document}. The states at each lattice site can take values in 0,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,k$$\end{document}. These can be interpreted as neuronal membrane potential, with the state k corresponding to a firing threshold. In the terminology of the contact processes, which we shall use in this paper, the state k corresponds to the individual being infectious (all other states are noninfectious). In order to reach the firing threshold, or to become infectious, the site must progress sequentially from 0 to k. The rate at which it climbs is determined by other neurons at state k, coupled to it through a Kac-type potential, of range γ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^{-1}$$\end{document}. The hydrodynamic equations are obtained in the limit γ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \rightarrow 0$$\end{document}. Extensions of the microscopic model to include excitatory and inhibitory neuron types, as well as other biophysical mechanisms, are also considered.
引用
收藏
相关论文
共 50 条
  • [1] Scaling Limit of a Generalized Contact Process
    Chariker, Logan
    De Masi, Anna
    Lebowitz, Joel L. L.
    Presutti, Errico
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (03)
  • [2] SCALING LIMIT OF AN ADAPTIVE CONTACT PROCESS
    Casanova, Adrian Gonzalez
    Tobias, Andras
    Valesin, Daniel
    ANNALS OF PROBABILITY, 2024, 52 (01): : 296 - 349
  • [3] Scaling limit of subcritical contact process
    Deshayes, Aurelia
    Rolla, Leonardo T.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (08) : 2630 - 2649
  • [4] Hydrodynamic and hydrostatic limit for a generalized contact process with mixed boundary conditions
    Mourragui, Mustapha
    Saada, Ellen
    Velasco, Sonia
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [5] Interface scaling in the contact process
    Dickman, R
    Muñoz, MA
    PHYSICAL REVIEW E, 2000, 62 (06): : 7632 - 7637
  • [6] Scaling behavior of the disordered contact process
    Fallert, S. V.
    Taraskin, S. N.
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [7] The threshold contact process: A continuum limit
    Penrose, MD
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) : 77 - 95
  • [8] BREAKDOWN OF SCALING INVARIANCE IN GENERALIZED BJORKEN LIMIT OF PERTURBATION THEORY
    HABERLER, PL
    LIPSHUTZ, NR
    WEAVER, OL
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 2 (01): : 295 - &
  • [9] Scaling of a random walk on a supercritical contact process
    den Hollander, F.
    dos Santos, R. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1276 - 1300
  • [10] Scaling of local persistence in the disordered contact process
    Juhasz, Robert
    Kovacs, Istvan A.
    PHYSICAL REVIEW E, 2020, 102 (01)