首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Deduction Normalization Theorem for Sette’s Logic and Its Modifications
被引:0
|
作者
:
Ya. I. Petrukhin
论文数:
0
引用数:
0
h-index:
0
机构:
Leninskie Gory,Moscow State University, Faculty of Philosophy
Ya. I. Petrukhin
机构
:
[1]
Leninskie Gory,Moscow State University, Faculty of Philosophy
来源
:
Moscow University Mathematics Bulletin
|
2019年
/ 74卷
关键词
:
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
In this paper we formulate natural deduction systems for Sette’s three-valued paraconsistent logic P1 and some related logics. For presented calculi we prove the soundness, completeness, and normalization theorems.
引用
收藏
页码:25 / 31
页数:6
相关论文
共 50 条
[1]
Deduction Normalization Theorem for Sette's Logic and Its Modifications
Petrukhin, Ya. I.
论文数:
0
引用数:
0
h-index:
0
机构:
Moscow MV Lomonosov State Univ, Fac Philosophy, Moscow 119991, Russia
Moscow MV Lomonosov State Univ, Fac Philosophy, Moscow 119991, Russia
Petrukhin, Ya. I.
MOSCOW UNIVERSITY MATHEMATICS BULLETIN,
2019,
74
(01)
: 25
-
31
[2]
On natural deduction in classical first-order logic: Curry-Howard correspondence, strong normalization and Herbrand's theorem
Aschieri, Federico
论文数:
0
引用数:
0
h-index:
0
机构:
Vienna Univ Technol, Inst Diskrete Math & Geometrie, Vienna, Austria
Vienna Univ Technol, Inst Diskrete Math & Geometrie, Vienna, Austria
Aschieri, Federico
论文数:
引用数:
h-index:
机构:
Zorzi, Margherita
THEORETICAL COMPUTER SCIENCE,
2016,
625
: 125
-
146
[3]
Natural Deduction for Full S5 Modal Logic with Weak Normalization
Martins, Ana Teresa
论文数:
0
引用数:
0
h-index:
0
机构:
Fed Univ Cear, Dept Computat, Fortaleza, Ceara, Brazil
Fed Univ Cear, Dept Computat, Fortaleza, Ceara, Brazil
Martins, Ana Teresa
Martins, Lilia Ramalho
论文数:
0
引用数:
0
h-index:
0
机构:
Fed Univ Cear, Dept Computat, Fortaleza, Ceara, Brazil
Fed Univ Cear, Dept Computat, Fortaleza, Ceara, Brazil
Martins, Lilia Ramalho
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE,
2006,
143
: 129
-
140
[4]
Natural deduction and weak normalization for full linear logic
Martins, Lilia Ramalho
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Fed Ceara, Dept Ciencia Comp, Fortaleza, Ceara, Brazil
Univ Fed Ceara, Dept Ciencia Comp, Fortaleza, Ceara, Brazil
Martins, Lilia Ramalho
Martins, Ana Teresa
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Fed Ceara, Dept Ciencia Comp, Fortaleza, Ceara, Brazil
Univ Fed Ceara, Dept Ciencia Comp, Fortaleza, Ceara, Brazil
Martins, Ana Teresa
LOGIC JOURNAL OF THE IGPL,
2004,
12
(06)
: 601
-
625
[5]
Does the deduction theorem fail for modal logic?
Raul Hakli
论文数:
0
引用数:
0
h-index:
0
机构:
University of Helsinki,Department of Philosophy
Raul Hakli
Sara Negri
论文数:
0
引用数:
0
h-index:
0
机构:
University of Helsinki,Department of Philosophy
Sara Negri
Synthese,
2012,
187
: 849
-
867
[6]
Does the deduction theorem fail for modal logic?
Hakli, Raul
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
Hakli, Raul
Negri, Sara
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
Negri, Sara
SYNTHESE,
2012,
187
(03)
: 849
-
867
[7]
A deduction theorem for normal modal propositional logic
Buvac, S
论文数:
0
引用数:
0
h-index:
0
Buvac, S
MODELING AND USING CONTEXT, PROCEEDINGS,
2003,
2680
: 107
-
115
[8]
Ruth Barcan Marcus on the Deduction Theorem in Modal Logic
Ballarin, Roberta
论文数:
0
引用数:
0
h-index:
0
机构:
Univ British Columbia, Dept Philosophy, Vancouver, BC, Canada
UBC Dept Philosophy, E370-1866 Main Mall, Vancouver, BC V6T 1Z1, Canada
Univ British Columbia, Dept Philosophy, Vancouver, BC, Canada
Ballarin, Roberta
HISTORY AND PHILOSOPHY OF LOGIC,
2024,
[9]
THE DEDUCTION THEOREM FOR QUANTUM LOGIC - SOME NEGATIVE RESULTS
MALINOWSKI, J
论文数:
0
引用数:
0
h-index:
0
MALINOWSKI, J
JOURNAL OF SYMBOLIC LOGIC,
1990,
55
(02)
: 615
-
625
[10]
Gentzen's proof of normalization for natural deduction
von Plato, Jan
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
Univ Helsinki, Dept Philosophy, FIN-00014 Helsinki, Finland
von Plato, Jan
BULLETIN OF SYMBOLIC LOGIC,
2008,
14
(02)
: 240
-
244
←
1
2
3
4
5
→