The multilinear Hörmander multiplier theorem with a Lorentz–Sobolev condition

被引:0
|
作者
Loukas Grafakos
Bae Jun Park
机构
[1] University of Missouri,Department of Mathematics
[2] Korea Institute for Advanced Study,School of Mathematics
关键词
Multilinear operators; Hörmander’s multiplier theorem; Primary 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we provide a multilinear version of the Hörmander multiplier theorem with a Lorentz–Sobolev space condition. The work is motivated by the recent result of the first author and Slavíková [12] where an analogous version of classical Hörmander multiplier theorem was obtained; this version is sharp in many ways and reduces the number of indices that appear in the statement of the theorem. As a natural extension of the linear case, in this work, we prove that if mn/2<s<mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$mn/2<s<mn$$\end{document}, then ‖Tσ(f1,⋯,fm)‖Lp(Rn)≲supk∈Z‖σ(2k·)Ψ(m)^‖Lsmn/s,1(Rmn)‖f1‖Lp1(Rn)⋯‖fm‖Lpm(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \big \Vert T_{\sigma }(f_1,\dots ,f_m)\big \Vert _{L^p(\mathbb {R}^n)}\lesssim \sup _{k\in \mathbb {Z}}\big \Vert \sigma (2^k\;\mathbf {\cdot }\;)\widehat{\Psi ^{(m)}}\big \Vert _{L_{s}^{mn/s,1}(\mathbb {R}^{mn})}\Vert f_1\Vert _{L^{p_1}(\mathbb {R}^n)}\cdots \Vert f_m\Vert _{L^{p_m}(\mathbb {R}^n)} \end{aligned}$$\end{document}for certain p,p1,⋯,pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,p_1,\dots ,p_m$$\end{document} with 1/p=1/p1+⋯+1/pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p=1/p_1+\dots +1/p_m$$\end{document}. We also show that the above estimate is sharp, in the sense that the Lorentz–Sobolev space Lsmn/s,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_s^{mn/s,1}$$\end{document} cannot be replaced by Lsr,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{s}^{r,q}$$\end{document} for r<mn/s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r<mn/s$$\end{document}, 0<q≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q\le \infty$$\end{document}, or by Lsmn/s,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_s^{mn/s,q}$$\end{document} for q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document}.
引用
收藏
页码:111 / 126
页数:15
相关论文
共 50 条
  • [1] The multilinear Hormander multiplier theorem with a Lorentz-Sobolev condition
    Grafakos, Loukas
    Park, Bae Jun
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 111 - 126
  • [2] BMO multilinear multiplier theorem of Mikhlin–Hörmander type
    Bae Jun Park
    Monatshefte für Mathematik, 2021, 194 : 291 - 304
  • [3] The Hörmander multiplier theorem for n-linear operators
    Jongho Lee
    Yaryong Heo
    Sunggeum Hong
    Jin Bong Lee
    Bae Jun Park
    Yejune Park
    Chan Woo Yang
    Mathematische Annalen, 2021, 381 : 499 - 555
  • [4] Hörmander type theorem for multilinear pseudo-differential operators
    Heo, Yaryong
    Hong, Sunggeum
    Yang, Chan Woo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (01)
  • [5] Multivariate Hörmander-Type Multiplier Theorem for the Hankel transform
    Jacek Dziubański
    Marcin Preisner
    Błażej Wróbel
    Journal of Fourier Analysis and Applications, 2013, 19 : 417 - 437
  • [6] The Hörmander multiplier theorem, III: the complete bilinear case via interpolation
    Loukas Grafakos
    Hanh Van Nguyen
    Monatshefte für Mathematik, 2019, 190 : 735 - 753
  • [7] On Hrmander condition
    YANG Qixiang
    ChineseScienceBulletin, 1997, (16) : 1341 - 1345
  • [8] The Hormander multiplier theorem for multilinear operators
    Grafakos, Loukas
    Si, Zengyan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 133 - 147
  • [9] Poincaré and Sobolev Inequalities for Vector Fields Satisfying Hrmander's Condition in Variable Exponent Sobolev Spaces
    Xia LI
    Guo Zhen LU
    Han Li TANG
    Acta Mathematica Sinica,English Series, 2015, (07) : 1067 - 1085
  • [10] Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition in variable exponent Sobolev spaces
    Xia Li
    Guo Zhen Lu
    Han Li Tang
    Acta Mathematica Sinica, English Series, 2015, 31 : 1067 - 1085