Algebraic Independence Results Related to 〈q, r〉-Number Systems

被引:0
|
作者
Shin-ichiro Okada
Iekata Shiokawa
机构
[1] Keio University,
来源
关键词
2000 Mathematics Subject Classifications: 11A63, 11J85; Key words: 〈; , ; 〉-number system, 〈; , ; 〉-linear function, Mahler function, Algebraic independence;
D O I
暂无
中图分类号
学科分类号
摘要
We define 〈q, r〉-linear arithmetical functions attached to the 〈q, r〉-number systems and give a necessary and sufficient condition for their generating power series to be algebraically independent over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb C}(z)$\end{document}. We also deduce algebraic independence of the functions values at a nonzero algebraic number in the circle of convergence.
引用
收藏
页码:319 / 335
页数:16
相关论文
共 50 条