We present an algorithm for computing zero-dimensional tropical varieties based on triangular decomposition and Newton polygon methods. From it, we derive algorithms for computing points on and links of higher-dimensional tropical varieties, using intersections with affine hyperplanes to reduce the dimension to zero. We use the algorithms to show that the tropical Grassmannians G3,8\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}_{3,8}$$\end{document} and G4,8\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}_{4,8}$$\end{document} are not simplicial.