Online tradeoff scheduling on a single machine to minimize makespan and maximum lateness

被引:0
|
作者
Qijia Liu
Jinjiang Yuan
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Henan Agricultural University,College of Information and Management Science
来源
关键词
Single machine scheduling; Online algorithms ; Competitive ratio; Bicriteria optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following single machine online tradeoff scheduling problem. A set of n independent jobs arrive online over time. Each job Jj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{j}$$\end{document} has a release date rj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{j}$$\end{document}, a processing time pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{j}$$\end{document} and a delivery time qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{j}$$\end{document}. The characteristics of a job are unknown until it arrives. The goal is to find a schedule that minimizes the makespan Cmax=max1≤j≤nCj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\max } = \max _{1 \le j \le n} C_{j}$$\end{document} and the maximum lateness Lmax=max1≤j≤nLj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\max } = \max _{1 \le j \le n} L_{j}$$\end{document}, where Lj=Cj+qj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{j} = C_{j} + q_{j}$$\end{document}. For the problem, we present a nondominated (ρ,1+1ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( \rho , 1 + \displaystyle \frac{1}{\rho } )$$\end{document}-competitive online algorithm for each ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} with 1≤ρ≤5+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 1 \le \rho \le \displaystyle \frac{\sqrt{5} + 1}{2}$$\end{document}.
引用
收藏
页码:385 / 395
页数:10
相关论文
共 50 条
  • [1] Online tradeoff scheduling on a single machine to minimize makespan and maximum lateness
    Liu, Qijia
    Yuan, Jinjiang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (02) : 385 - 395
  • [2] Bicriteria scheduling on a batching machine to minimize maximum lateness and makespan
    He, Cheng
    Lin, Yixun
    Yuan, Jinjiang
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 234 - 240
  • [3] Online tradeoff scheduling on a single machine to minimize makespan and total weighted completion time
    Ma, Ran
    Yuan, Jinjiang
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2014, 158 : 114 - 119
  • [4] Rescheduling for machine disruption to minimize makespan and maximum lateness
    Liu, Zhixin
    Ro, Young K.
    JOURNAL OF SCHEDULING, 2014, 17 (04) : 339 - 352
  • [5] Rescheduling for machine disruption to minimize makespan and maximum lateness
    Zhixin Liu
    Young K. Ro
    Journal of Scheduling, 2014, 17 : 339 - 352
  • [6] Single-machine scheduling to stochastically minimize maximum lateness
    Xiaoqiang Cai
    Liming Wang
    Xian Zhou
    Journal of Scheduling, 2007, 10 : 293 - 301
  • [7] Single-machine scheduling to stochastically minimize maximum lateness
    Cai, Xiaoqiang
    Wang, Liming
    Zhou, Xian
    JOURNAL OF SCHEDULING, 2007, 10 (4-5) : 293 - 301
  • [8] Pareto optimization scheduling of family jobs on a p-batch machine to minimize makespan and maximum lateness
    Geng, Zhichao
    Yuan, Jinjiang
    THEORETICAL COMPUTER SCIENCE, 2015, 570 : 22 - 29
  • [9] Scheduling an unbounded batch machine to minimize maximum lateness
    Bai, Shuyan
    Zhang, Fuzeng
    Li, Shuguang
    Liu, Qiming
    FRONTIERS IN ALGORITHMICS, PROCEEDINGS, 2007, 4613 : 172 - +
  • [10] Bi-criteria and tri-criteria analysis to minimize maximum lateness makespan and resource consumption for scheduling a single machine
    Liron Yedidsion
    Journal of Scheduling, 2012, 15 : 665 - 679