An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization

被引:0
|
作者
Fei Li
Zheng Qu
机构
[1] The University of Hong Kong,Department of Mathematics
来源
关键词
Inexact augmented Lagrangian method; Large scale optimization; Randomized first-order method; Explicit inner termination rule; Relative smoothness condition; 90C06; 90C25; 49M37;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an inexact proximal augmented Lagrangian framework with explicit inner problem termination rule for composite convex optimization problems. We consider arbitrary linearly convergent inner solver including in particular stochastic algorithms, making the resulting framework more scalable facing the ever-increasing problem dimension. Each subproblem is solved inexactly with an explicit and self-adaptive stopping criterion, without requiring to set an a priori target accuracy. When the primal and dual domain are bounded, our method achieves O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/\sqrt{\epsilon })$$\end{document} and O(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1/{\epsilon })$$\end{document} complexity bound in terms of number of inner solver iterations, respectively for the strongly convex and non-strongly convex case. Without the boundedness assumption, only logarithm terms need to be added and the above two complexity bounds increase respectively to O~(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(1/\sqrt{\epsilon })$$\end{document} and O~(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(1/{\epsilon })$$\end{document}, which hold both for obtaining ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-optimal and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-KKT solution. Within the general framework that we propose, we also obtain O~(1/ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(1/{\epsilon })$$\end{document} and O~(1/ϵ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(1/{\epsilon ^2})$$\end{document} complexity bounds under relative smoothness assumption on the differentiable component of the objective function. We show through theoretical analysis as well as numerical experiments the computational speedup possibly achieved by the use of randomized inner solvers for large-scale problems.
引用
收藏
页码:583 / 644
页数:61
相关论文
共 31 条
  • [1] An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization
    Li, Fei
    Qu, Zheng
    MATHEMATICAL PROGRAMMING COMPUTATION, 2021, 13 (03) : 583 - 644
  • [2] On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming
    Liu, Ya-Feng
    Liu, Xin
    Ma, Shiqian
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (02) : 632 - 650
  • [3] A Proximal Augmented Lagrangian Method for Linearly Constrained Nonconvex Composite Optimization Problems
    Melo, Jefferson G.
    Monteiro, Renato D. C.
    Wang, Hairong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (01) : 388 - 420
  • [4] An Adaptive Superfast Inexact Proximal Augmented Lagrangian Method for Smooth Nonconvex Composite Optimization Problems
    Arnesh Sujanani
    Renato D. C. Monteiro
    Journal of Scientific Computing, 2023, 97
  • [5] An accelerated inexact dampened augmented Lagrangian method for linearly-constrained nonconvex composite optimization problems
    Weiwei Kong
    Renato D. C. Monteiro
    Computational Optimization and Applications, 2023, 85 : 509 - 545
  • [6] An accelerated inexact dampened augmented Lagrangian method for linearly-constrained nonconvex composite optimization problems
    Kong, Weiwei
    Monteiro, Renato D. C.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 85 (02) : 509 - 545
  • [7] An Adaptive Superfast Inexact Proximal Augmented Lagrangian Method for Smooth Nonconvex Composite Optimization Problems
    Sujanani, Arnesh
    Monteiro, Renato D. C.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [8] Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization
    Patrascu, Andrei
    Necoara, Ion
    Quoc Tran-Dinh
    OPTIMIZATION LETTERS, 2017, 11 (03) : 609 - 626
  • [9] Adaptive inexact fast augmented Lagrangian methods for constrained convex optimization
    Andrei Patrascu
    Ion Necoara
    Quoc Tran-Dinh
    Optimization Letters, 2017, 11 : 609 - 626
  • [10] An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints
    Sahin, Mehmet Fatih
    Eftekhari, Armin
    Alacaoglu, Ahmet
    Latorre, Fabian
    Cevher, Volkan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32