Let P be a finite p-group, and let k a field of characteristic p>0. We prove that a finietly generated kG-module M is endotrivial if and only if\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}
where PHom (-,-) is the set of endomorphisms which factor through projective modules.