Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes

被引:0
|
作者
A. Sheykhi
F. Naeimipour
S. M. Zebarjad
机构
[1] Shiraz University,Physics Department and Biruni Observatory, College of Sciences
[2] Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),undefined
来源
关键词
Nonlinear electrodynamics; Thermodynamic geometry; Dilaton;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=[(n-1)/2]$$\end{document} rotation parameters in n-dimensional spacetime where [x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, dM=TdS+∑i=1kΩidJi+UdQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ dM}={ TdS}+{{{\sum _{i=1}^{k}}}}\Omega _{i}d{J}_{i}+{ Ud}{Q}$$\end{document}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.
引用
收藏
相关论文
共 50 条
  • [1] Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes
    Sheykhi, A.
    Naeimipour, F.
    Zebarjad, S. M.
    GENERAL RELATIVITY AND GRAVITATION, 2016, 48 (07)
  • [2] Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics
    Sheykhi, A.
    Dehghani, M. H.
    Zangeneh, M. Kord
    ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
  • [3] Thermodynamics of rotating black branes in higher dimensional Einstein - nonlinear electrodynamics - dilaton gravity
    Sheykhi, A.
    Hendi, S. H.
    CANADIAN JOURNAL OF PHYSICS, 2016, 94 (01) : 58 - 70
  • [4] Thermal instability and thermodynamic geometry of topological dilaton black holes coupled to nonlinear electrodynamics
    Sheykhi, A.
    Hajkhalili, S.
    GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (11)
  • [5] Thermal instability and thermodynamic geometry of topological dilaton black holes coupled to nonlinear electrodynamics
    A. Sheykhi
    S. Hajkhalili
    General Relativity and Gravitation, 2015, 47
  • [6] Thermodynamic properties of dilaton black holes with nonlinear electrodynamics
    Dehghani, M.
    PHYSICAL REVIEW D, 2018, 98 (04)
  • [7] Phase transition and thermodynamic geometry of topological dilaton black holes in gravitating logarithmic nonlinear electrodynamics
    Sheykhi, A.
    Naeimipour, F.
    Zebarjad, S. M.
    PHYSICAL REVIEW D, 2015, 91 (12):
  • [8] Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics
    Sheykhi, Ahmad
    ADVANCES IN HIGH ENERGY PHYSICS, 2014, 2014
  • [9] Thermodynamic geometry and thermal stability of n-dimensional dilaton black holes in the presence of logarithmic nonlinear electrodynamics
    Sheykhi, A.
    Naeimipour, F.
    Zebarjad, S. M.
    PHYSICAL REVIEW D, 2015, 92 (12):
  • [10] Charged rotating dilaton black branes in AdS universe
    Ahmad Sheykhi
    Seyed Hossein Hendi
    General Relativity and Gravitation, 2010, 42 : 1571 - 1583