Robustness of weighted Lp–depth and Lp–median

被引:2
|
作者
Yijun Zuo*
机构
[1] Michigan State University,Department of Statistics and Probability
来源
Allgemeines Statistisches Archiv | 2004年 / 88卷 / 2期
关键词
Breakdown point; depth function; efficiency; equivariance; influence function; –norm; median; robustness; C10; C14;
D O I
10.1007/s101820400169
中图分类号
学科分类号
摘要
Lp–norm weighted depth functions are introduced and the local and global robustness of these weighted Lp–depth functions and their induced multivariate medians are investigated via influence function and finite sample breakdown point. To study the global robustness of depth functions, a notion of finite sample breakdown point is introduced. The weighted Lp–depth functions turn out to have the same low breakdown point as some other popular depth functions. Their influence functions are also unbounded. On the other hand, the weighted Lp–depth induced medians are globally robust with the highest possible breakdown point for any reasonable estimator. The weighted Lp–medians are also locally robust with bounded influence functions for suitable weight functions. Unlike other existing depth functions and multivariate medians, the weighted Lp depth and medians are easy to calculate in high dimensions. The price for this advantage is the lack of affine invariance and equivariance of the weighted Lp depth and medians, respectively.
引用
收藏
页码: 215 / 234
页数:19
相关论文
共 50 条
  • [1] TRANSLATION INVARIANT SUBSPACES OF WEIGHTED LP AND LP SPACES
    DOMAR, Y
    MATHEMATICA SCANDINAVICA, 1981, 49 (01) : 133 - 144
  • [2] On a sequence of integral operators on weighted Lp spacesО после дователъности интегралъиыхоператоров в весовых пространствах Lp
    Francesco Altomare
    Sabina Milella
    Analysis Mathematica, 2008, 34 (4)
  • [3] Between the mean and the median:: the Lp estimator
    Pennecchi, Francesca
    Callegaro, Luca
    METROLOGIA, 2006, 43 (03) : 213 - 219
  • [4] MULTIPLIERS OF WEIGHTED LP SPACES
    DETRE, PA
    STUDIA MATHEMATICA, 1991, 98 (02) : 131 - 145
  • [5] On weighted Lp simultaneous approximation
    Kilgore, T
    ACTA MATHEMATICA HUNGARICA, 1996, 73 (1-2) : 41 - 63
  • [6] Approximation in weighted Lp spaces
    Lee, MS
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (5-6) : 657 - 674
  • [7] Weighted convolution operators on lp
    Borwein, D
    Kratz, W
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (02): : 175 - 179
  • [8] Weighted mean operators on lp
    Borwein, D
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (04): : 406 - 412
  • [9] APPROXIMATION IN WEIGHTED Lp SPACES
    Guven, Ali
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2012, 53 (01): : 11 - 23
  • [10] Concentration Robustness in LP Kinetic Systems
    Lao, Angelyn R.
    Lubeni, Patrick Vincent N.
    Magpantay, Daryl M.
    Mendoza, Eduardo R.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (01) : 29 - 66