Investigating low-delay deep learning-based cultural image reconstruction

被引:1
|
作者
Abdelhak Belhi
Abdulaziz Khalid Al-Ali
Abdelaziz Bouras
Sebti Foufou
Xi Yu
Haiqing Zhang
机构
[1] Qatar University,CSE, College of Engineering
[2] Université Lumière Lyon 2,DISP Laboratory
[3] Université de Bourgogne,Le2i Lab
[4] Chengdu University,School of Information Science and Engineering
[5] Chengdu University of Information Technology,undefined
来源
关键词
Digital heritage; Image reconstruction; Low-delay reconstruction; Image inpainting; Deep learning; Image clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Numerous cultural assets host a great historical and moral value, but due to their degradation, this value is heavily affected as their attractiveness is lost. One of the solutions that most heritage organizations and museums currently choose is to leverage the knowledge of art and history experts in addition to curators to recover and restore the damaged assets. This process is labor-intensive, expensive and more often results in just an assumption over the damaged or missing region. In this work, we tackle the issue of completing missing regions in artwork through advanced deep learning and image reconstruction (inpainting) techniques. Following our analysis of different image completion and reconstruction approaches, we noticed that these methods suffer from various limitations such as lengthy processing times and hard generalization when trained with multiple visual contexts. Most of the existing learning-based image completion and reconstruction techniques are trained on large datasets with the objective of retrieving the original data distribution of the training samples. However, this distribution becomes more complex when the training data is diverse making the training process difficult and the reconstruction inefficient. Through this paper, we present a clustering-based low-delay image completion and reconstruction approach which combines supervised and unsupervised learning to address the highlighted issues. We compare our technique to the current state of the art using a real-world dataset of artwork collected from various cultural institutions. Our approach is evaluated using statistical methods and a surveyed audience to better interpret our results objectively and subjectively.
引用
收藏
页码:1911 / 1926
页数:15
相关论文
共 50 条
  • [1] Investigating low-delay deep learning-based cultural image reconstruction
    Belhi, Abdelhak
    Al-Ali, Abdulaziz Khalid
    Bouras, Abdelaziz
    Foufou, Sebti
    Yu, Xi
    Zhang, Haiqing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (06) : 1911 - 1926
  • [2] Deep Learning-Based Dictionary Learning and Tomographic Image Reconstruction
    Rudzusika, Jevgenija
    Koehler, Thomas
    Oktem, Ozan
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (04): : 1729 - 1764
  • [3] Complexities of deep learning-based undersampled MR image reconstruction
    Noordman, Constant Richard
    Yakar, Derya
    Bosma, Joeran
    Simonis, Frank Frederikus Jacobus
    Huisman, Henkjan
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [4] Robustness Analysis for Deep Learning-Based Image Reconstruction Models
    Ayna, Cemre Omer
    Gurbuz, Ali Cafer
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1428 - 1432
  • [5] Deep learning-based PET image denoising and reconstruction: a review
    Hashimoto, Fumio
    Onishi, Yuya
    Ote, Kibo
    Tashima, Hideaki
    Reader, Andrew J.
    Yamaya, Taiga
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 24 - 46
  • [6] Complexities of deep learning-based undersampled MR image reconstruction
    Constant Richard Noordman
    Derya Yakar
    Joeran Bosma
    Frank Frederikus Jacobus Simonis
    Henkjan Huisman
    European Radiology Experimental, 7
  • [7] Deep Learning-Based Thermal Image Reconstruction and Object Detection
    Batchuluun, Ganbayar
    Kang, Jin Kyu
    Nguyen, Dat Tien
    Pham, Tuyen Danh
    Arsalan, Muhammad
    Park, Kang Ryoung
    IEEE ACCESS, 2021, 9 : 5951 - 5971
  • [8] Deep learning-based PET image denoising and reconstruction: a review
    Fumio Hashimoto
    Yuya Onishi
    Kibo Ote
    Hideaki Tashima
    Andrew J. Reader
    Taiga Yamaya
    Radiological Physics and Technology, 2024, 17 : 24 - 46
  • [9] Deep Learning-Based Image Reconstruction for CT Angiography of the Aorta
    Heinrich, Andra
    Streckenbach, Felix
    Beller, Ebba
    Gross, Justus
    Weber, Marc-Andre
    Meinel, Felix G.
    DIAGNOSTICS, 2021, 11 (11)
  • [10] Deep Learning-Based Reconstruction Improves the Image Quality of Low-Dose CT Colonography
    Chen, Yanshan
    Huang, Zixuan
    Feng, Lijuan
    Zou, Wenbin
    Kong, Decan
    Zhu, Dongyun
    Dai, Guochao
    Zhao, Weidong
    Zhang, Yuanke
    Luo, Mingyue
    ACADEMIC RADIOLOGY, 2024, 31 (08) : 3191 - 3199