Modelling carbon nanocones for selective filter

被引:0
|
作者
Pakhapoom Sarapat
Ngamta Thamwattana
Barry J. Cox
Duangkamon Baowan
机构
[1] Mahidol University,Department of Mathematics, Faculty of Science
[2] University of Newcastle,School of Mathematical and Physical Sciences
[3] The University of Adelaide,School of Mathematical Sciences
[4] Centre of Excellence in Mathematics,undefined
[5] CHE,undefined
来源
关键词
Carbon nanocones; Lennard-Jones potential; Selective filter;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the potential use of carbon nanocones as selective filtration devices. Using a continuum approach and the Lennard-Jones potential, we determine the energy of truncated carbon nanocones interacting with ions (Na+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{+}$$\end{document} and Cl-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document}) and water molecules. The Verlet algorithm is adopted to determine the dynamics of the ions and the water molecules as a result of the interaction with the nanocones. The acceptance energy is derived to determine the minimum and critical radii of the truncated nanocones that block the ions and allow only water molecules to pass through. Our results show that the channel with apex angle of 19.2∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$19.2^{\circ}$$\end{document} and opening radius in the range 3.368–3.528 Å gives highest suction energy.
引用
收藏
页码:1650 / 1662
页数:12
相关论文
共 50 条
  • [1] Modelling carbon nanocones for selective filter
    Sarapat, Pakhapoom
    Thamwattana, Ngamta
    Cox, Barry J.
    Baowan, Duangkamon
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (08) : 1650 - 1662
  • [2] Modelling the joining of nanocones and nanotubes
    Duangkamon Baowan
    Barry J. Cox
    James M. Hill
    Journal of Mathematical Chemistry, 2011, 49 : 475 - 488
  • [3] Modelling the joining of nanocones and nanotubes
    Baowan, Duangkamon
    Cox, Barry J.
    Hill, James M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 49 (02) : 475 - 488
  • [4] Humidity Sensing by Carbon Nanocones
    Svasand, Eldrid
    Haeberle, Patricio
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (05) : 3575 - 3580
  • [5] On Molecular Descriptors of Carbon Nanocones
    Nazeer, Waqas
    Farooq, Adeel
    Younas, Muhammad
    Munir, Mobeen
    Kang, Shin Min
    BIOMOLECULES, 2018, 8 (03):
  • [6] Stability of conjugated carbon nanocones
    Heiberg-Andersen, H
    Skjeltorp, A
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) : 589 - 604
  • [7] Stability of Conjugated Carbon Nanocones
    H. Heiberg-Andersen
    A. T. Skjeltorp
    Journal of Mathematical Chemistry, 2005, 38 : 589 - 604
  • [8] Topological Properties of Carbon Nanocones
    Arockiaraj, Micheal
    Clement, Joseph
    Balasubramanian, Krishnan
    POLYCYCLIC AROMATIC COMPOUNDS, 2020, 40 (05) : 1332 - 1346
  • [9] Mechanical properties of carbon nanocones
    Wei, J. X.
    Liew, K. M.
    He, X. Q.
    APPLIED PHYSICS LETTERS, 2007, 91 (26)
  • [10] Stability of vacancies in carbon nanocones
    Guedes, J. P.
    Azevedo, S.
    Kaschny, J. R.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (03): : 347 - 351