Let A=(∧V,d)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${A= (\land V, d)}$$\end{document} be a minimal Sullivan algebra where V is finite dimensional. We show that the Hochschild cohomology HH*(A; A) can be computed in terms of derivations of A. This provides another method to compute the loop space homology of a simply connected space for which π∗(X)⊗Q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${ \pi_*(X) \otimes \mathbb{Q} }$$\end{document} is finite dimensional.
机构:
Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R ChinaHubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
Xu YunGe
Zhang Chao
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaHubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
Zhang Chao
Ma XiaoJing
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R ChinaHubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
Ma XiaoJing
Hu QingFeng
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R ChinaHubei Univ, Sch Math & Comp Sci, Wuhan 430062, Peoples R China
机构:
Botswana Int Univ Sci & Technol, Fac Sci, Dept Math & Stat, Palapye, BotswanaBotswana Int Univ Sci & Technol, Fac Sci, Dept Math & Stat, Palapye, Botswana
机构:
Univ Verona, Dipartimento Informat Settore Matemat, Str Grazie 15 Ca Vignal, I-37134 Verona, ItalyUniv Verona, Dipartimento Informat Settore Matemat, Str Grazie 15 Ca Vignal, I-37134 Verona, Italy
Rubio y Degrassi, Lleonard
Schroll, Sibylle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cologne, Dept Math, Weyertal 86 90, D-50931 Cologne, GermanyUniv Verona, Dipartimento Informat Settore Matemat, Str Grazie 15 Ca Vignal, I-37134 Verona, Italy