Hochschild Cohomology of a Sullivan Algebra

被引:0
|
作者
Jean Baptiste Gatsinzi
机构
[1] University of Namibia,Department of Mathematics, Faculty of Science
来源
关键词
Sullivan algebra; Hochschild cohomology; Primary 55P62; Secondary 55P35;
D O I
暂无
中图分类号
学科分类号
摘要
Let A=(∧V,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A= (\land V, d)}$$\end{document} be a minimal Sullivan algebra where V is finite dimensional. We show that the Hochschild cohomology HH*(A; A) can be computed in terms of derivations of A. This provides another method to compute the loop space homology of a simply connected space for which π∗(X)⊗Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \pi_*(X) \otimes \mathbb{Q} }$$\end{document} is finite dimensional.
引用
收藏
页码:3765 / 3776
页数:11
相关论文
共 50 条
  • [1] Hochschild Cohomology of a Sullivan Algebra
    Gatsinzi, Jean Baptiste
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 3765 - 3776
  • [2] On the Hochschild cohomology theory of A∞-algebra
    Noreldeen, Alaa Hassan
    SCIENTIFIC AFRICAN, 2019, 5
  • [3] Hochschild cohomology of Beilinson algebra of exterior algebra
    YunGe Xu
    Chao Zhang
    XiaoJing Ma
    QingFeng Hu
    Science China Mathematics, 2012, 55 : 1153 - 1170
  • [4] Hochschild cohomology of Beilinson algebra of exterior algebra
    XU YunGe 1
    2 Academy of Mathematics and System Science
    ScienceChina(Mathematics), 2012, 55 (06) : 1153 - 1170
  • [5] Hochschild cohomology of Beilinson algebra of exterior algebra
    Xu YunGe
    Zhang Chao
    Ma XiaoJing
    Hu QingFeng
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (06) : 1153 - 1170
  • [6] HOCHSCHILD COHOMOLOGY OF CERTAIN KOSZUL SULLIVAN EXTENSIONS
    Gatsinzi, Jean Baptiste
    Maphane, Oteng
    QUAESTIONES MATHEMATICAE, 2022, 45 (12) : 1895 - 1907
  • [7] The first Hochschild cohomology as a Lie algebra
    Rubio y Degrassi, Lleonard
    Schroll, Sibylle
    Solotar, Andrea
    QUAESTIONES MATHEMATICAE, 2023, 46 (09) : 1955 - 1980
  • [8] REVISITING HOCHSCHILD COHOMOLOGY FOR ALGEBRA BUNDLES
    Kiranagi, B. S.
    Rajendra, R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2008, 7 (06) : 685 - 715
  • [9] The Hochschild cohomology ring of a group algebra
    Siegel, SF
    Witherspoon, SJ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 : 131 - 157
  • [10] Hochschild cohomology algebra of Abelian groups
    Cibils, C
    Solotar, A
    ARCHIV DER MATHEMATIK, 1997, 68 (01) : 17 - 21