Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms

被引:0
|
作者
Kun Hao
Junpeng Cao
Guang-Liang Li
Wen-Li Yang
Kangjie Shi
Yupeng Wang
机构
[1] Northwest University,Institute of Modern Physics
[2] Institute of Physics,Beijing National Laboratory for Condensed Matter Physics
[3] Chinese Academy of Sciences,Department of Applied Physics
[4] Collaborative Innovation Center of Quantum Matter,undefined
[5] Xian Jiaotong University,undefined
[6] Beijing Center for Mathematics and Information Interdisciplinary Sciences,undefined
关键词
Bethe Ansatz; Lattice Integrable Models;
D O I
暂无
中图分类号
学科分类号
摘要
The Izergin-Korepin model with general non-diagonal boundary terms, a typical integrable model beyond A-type and without U(1)-symmetry, is studied via the offdiagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and the K-matrices, certain operator product identities of the transfer matrix are obtained at some special points of the spectral parameter. These identities and the asymptotic behaviors of the transfer matrix together allow us to construct the inhomogeneous T − Q relation and the associated Bethe ansatz equations. In the diagonal boundary limit, the reduced results coincide exactly with those obtained via other methods.
引用
收藏
相关论文
共 50 条
  • [1] Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms
    Hao, Kun
    Cao, Junpeng
    Li, Guang-Liang
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [2] Izergin-Korepin model with a boundary
    Yang, WL
    Zhang, YZ
    NUCLEAR PHYSICS B, 2001, 596 (03) : 495 - 512
  • [3] A REMARK ON GROUND STATE OF BOUNDARY IZERGIN-KOREPIN MODEL
    Kojima, Takeo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (12): : 1973 - 1989
  • [4] Exact surface energies and boundary excitations of the Izergin-Korepin model with generic boundary fields
    Lu, Pengcheng
    Cao, Junpeng
    Yang, Wen-Li
    Marquette, Ian
    Zhang, Yao-Zhong
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (02):
  • [5] The general solutions to the reflection equation of the Izergin-Korepin model
    Fan, H
    Hou, BY
    Li, GL
    Shi, KJ
    Yue, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (33): : 6021 - 6032
  • [6] Bethe ansatz for the Izergin-Korepin model
    Fan, H
    NUCLEAR PHYSICS B, 1997, 488 (1-2) : 409 - 425
  • [7] Link invariant of the Izergin-Korepin model
    Pant, P
    Wu, FY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (22): : 7775 - 7782
  • [8] A convenient basis for the Izergin-Korepin model
    Qiao, Yi
    Zhang, Xin
    Hao, Kun
    Cao, Junpeng
    Li, Guang-Liang
    Yang, Wen-Li
    Shi, Kangjie
    NUCLEAR PHYSICS B, 2018, 930 : 399 - 417
  • [9] The algebraic Bethe ansatz for the Izergin-Korepin model with open boundary conditions
    Li, GL
    Shi, KJ
    Yue, RH
    NUCLEAR PHYSICS B, 2003, 670 (03) : 401 - 438
  • [10] On the universal R-matrix for the Izergin-Korepin model
    Boos, Herman
    Goehmann, Frank
    Kluemper, Andreas
    Nirov, Khazret S.
    Razumov, Alexander V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (35)