Demystifying uncertainty in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF) algorithms

被引:0
|
作者
Omar F. AlThuwaynee
Sang-Wan Kim
Mohamed A. Najemaden
Ali Aydda
Abdul-Lateef Balogun
Moatasem M. Fayyadh
Hyuck-Jin Park
机构
[1] Sejong University,Department of Energy and Mineral Resources Engineering
[2] Ministry of Environment,Department of Geology, Faculty of Sciences
[3] Ibn Zohr University,Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering
[4] Universiti Teknologi PETRONAS (UTP),Engineering Services and Asset Management
[5] John Holland Group,undefined
关键词
PM10; Air quality modeling; Landsat 8 OLI/TIRS imagery; Spectral indices; Petroleum cities; Urban planning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:43544 / 43566
页数:22
相关论文
共 8 条
  • [1] Demystifying uncertainty in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF) algorithms
    AlThuwaynee, Omar F.
    Kim, Sang-Wan
    Najemaden, Mohamed A.
    Aydda, Ali
    Balogun, Abdul-Lateef
    Fayyadh, Moatasem M.
    Park, Hyuck-Jin
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (32) : 43544 - 43566
  • [2] Enhancing flood susceptibility mapping in Sana'a, Yemen with random forest and eXtreme gradient boosting algorithms
    Alwathaf, Yahia
    Al-Areeq, Ahmed M.
    Al-Masnay, Yousef A.
    Al-Aizari, Ali R.
    Al-Areeq, Nabil M.
    GEOCARTO INTERNATIONAL, 2025, 40 (01)
  • [3] Uncertainty Reduction in Flood Susceptibility Mapping Using Random Forest and eXtreme Gradient Boosting Algorithms in Two Tropical Desert Cities, Shibam and Marib, Yemen
    Al-Aizari, Ali R.
    Alzahrani, Hassan
    Althuwaynee, Omar F.
    Al-Masnay, Yousef A.
    Ullah, Kashif
    Park, Hyuck-Jin
    Al-Areeq, Nabil M.
    Rahman, Mahfuzur
    Hazaea, Bashar Y.
    Liu, Xingpeng
    REMOTE SENSING, 2024, 16 (02)
  • [4] Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost)
    Kavzoglu, Taskin
    Teke, Alihan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (06) : 7367 - 7385
  • [5] Predictive Performances of Ensemble Machine Learning Algorithms in Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and Natural Gradient Boosting (NGBoost)
    Taskin Kavzoglu
    Alihan Teke
    Arabian Journal for Science and Engineering, 2022, 47 : 7367 - 7385
  • [6] Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing
    Zhang, Wengang
    He, Yuwei
    Wang, Luqi
    Liu, Songlin
    Meng, Xuanyu
    GEOLOGICAL JOURNAL, 2023, 58 (06) : 2372 - 2387
  • [7] Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS
    Hassan Ait Naceur
    Hazem Ghassan Abdo
    Brahim Igmoullan
    Mustapha Namous
    Fahad Alshehri
    Jasem A Albanai
    Environmental Earth Sciences, 2024, 83
  • [8] Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS
    Naceur, Hassan Ait
    Abdo, Hazem Ghassan
    Igmoullan, Brahim
    Namous, Mustapha
    Alshehri, Fahad
    Albanai, Jasem A.
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (03)