Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals

被引:0
|
作者
Y. Lalatonne
J. Richardi
M. P. Pileni
机构
[1] Université Pierre et Marie Curie,
[2] Laboratoire des Matériaux Mesoscopiques et Nanométriques,undefined
[3] U.M.R. 7070,undefined
[4] BP 52,undefined
[5] 4 place Jussieu,undefined
来源
Nature Materials | 2004年 / 3卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The structure, thermodynamics and dynamics in many physical and chemical systems are determined by interplay of short-range isotropic and long-range anisotropic forces. Magnetic nanoparticles dispersed in solution are ideal model systems to study this interplay, as they are subjected to both isotropic van der Waals and anisotropic dipolar forces. Here we show from experiment an abrupt transition of maghemite nanocrystal organization from chain-like to random structures when nanoparticle solutions are evaporated under a magnetic field. This is explained by brownian dynamics simulations in terms of a variation of the strength of van der Waals interactions with the particle contact distance, which is tuned by the length of the molecules coating the particles. The weak dipole–dipole interactions between the maghemite particles are usually not sufficient to result in the chain formation observed here. However, due to the van der Waals interactions, when the nanocrystal contact distance is short enough, clusters of nanocrystals are formed during the evaporation process. These clusters exhibit large dipole moments compared with a single particle, which explains the formation of chain-like structures. Conversely, when the nanocrystal contact distance is too long, no nanocrystal aggregation occurs, and a random distribution of maghemite nanocrystals is obtained.
引用
收藏
页码:121 / 125
页数:4
相关论文
共 50 条
  • [1] Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals
    Lalatonne, Y
    Richardi, J
    Pileni, MP
    NATURE MATERIALS, 2004, 3 (02) : 121 - 125
  • [2] Controlling friction by adjusting van der Waals forces
    不详
    INTERNATIONAL SUGAR JOURNAL, 2013, 115 (1377): : 615 - 615
  • [3] Van der Waals forces
    Margenau, H
    REVIEWS OF MODERN PHYSICS, 1939, 11 (01) : 0001 - 0035
  • [4] Probing Van Der Waals and Magnetic Forces in Bacteria with Magnetic Nanoparticles
    Campana, Ana Lucia
    Joudeh, Nadeem
    Hoyer, Henrik
    Royne, Anja
    Linke, Dirk
    Mikheenko, Pavlo
    PROCEEDINGS OF THE 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2020), 2020,
  • [5] On the van-der-Waals forces
    V. P. Maslov
    Mathematical Notes, 2016, 99 : 284 - 289
  • [6] Van der Waals forces in pNRQED
    Shtabovenko, Vladyslav
    XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM, 2016, 1701
  • [7] SURFACE VAN DER WAALS FORCES
    SLUTSKY, LJ
    LEE, WY
    ISAACS, LL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 215 - 215
  • [8] The van der Waals cohesion forces
    Debye, P
    PHYSIKALISCHE ZEITSCHRIFT, 1920, 21 : 178 - 187
  • [9] Determination of van der Waals forces
    Massey, HSW
    Bucikingham, RA
    NATURE, 1936, 138 : 77 - 77
  • [10] VAN DER WAALS FORCES IN ELECTROLYTES
    DAVIES, B
    NINHAM, BW
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (12): : 5797 - &