Accuracy, Performance, and Transferability of Interparticle Potentials for Al–Cu Alloys: Comparison of Embedded Atom and Deep Machine Learning Models

被引:0
|
作者
E. O. Khazieva
N. M. Shchelkatchev
A. O. Tipeev
R. E. Ryltsev
机构
[1] Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences,
[2] Ural Federal University,undefined
[3] Vereshchagin Institute for High Pressure Physics,undefined
[4] Russian Academy of Sciences,undefined
[5] Department of Materials Engineering,undefined
[6] Federal University of São Carlos,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:864 / 877
页数:13
相关论文
共 12 条
  • [1] Accuracy, Performance, and Transferability of Interparticle Potentials for Al-Cu Alloys: Comparison of Embedded Atom and Deep Machine Learning Models
    Khazieva, E. O.
    Shchelkatchev, N. M.
    Tipeev, A. O.
    Ryltsev, R. E.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2023, 137 (06) : 864 - 877
  • [2] Deep machine learning, molecular dynamics and experimental studies of liquid Al-Cu-Co alloys
    Kamaeva, L. V.
    Tsiok, E. N.
    Chtchelkatchev, N. M.
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 393
  • [3] Assessing the accuracy of machine learning interatomic potentials in predicting the elemental orderings: A case study of Li-Al alloys
    Liu, Yunsheng
    Mo, Yifei
    Acta Materialia, 2024, 268
  • [4] Assessing the accuracy of machine learning interatomic potentials in predicting the elemental orderings: A case study of Li-Al alloys
    Liu, Yunsheng
    Mo, Yifei
    ACTA MATERIALIA, 2024, 268
  • [5] Performance Comparison of SRCNN, VDSR, and SRDenseNet Deep Learning Models in Embedded Autonomous Driving Platforms
    kim, Joongheon
    Shin, MyungJae
    Kim, Dohyun
    Park, Soohyun
    Kang, Yeongeun
    Kim, Junghyun
    35TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2021), 2021, : 56 - 58
  • [6] Modified embedded-atom method interatomic potentials for the Al-Mn, Ti-Mn and Cu-Mn binary alloys
    Ostovari Moghaddam A.
    Fereidonnejad R.
    Mikhailov D.
    Moaddeli M.
    Trofimov E.
    Materials Letters, 2024, 359
  • [7] Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point
    Mahata, Avik
    Mukhopadhyay, Tanmoy
    Zaeem, Mohsen Asle
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 201
  • [8] Modified embedded atom method interatomic potentials for the Fe-Al, Fe-Cu, Fe-Nb, Fe-W, and Co-Nb binary alloys
    Muralles, Mario
    Oh, Joo Tien
    Chen, Zhong
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 230
  • [9] Classification of human actions using 3D skeleton data: A performance comparison between classical machine learning and deep learning models
    Kim, Juhwan
    Kim, Jongchan
    Lee, Sungim
    KOREAN JOURNAL OF APPLIED STATISTICS, 2024, 37 (05)
  • [10] Application of machine learning for the differentiation of thymomas and thymic cysts using deep transfer learning: A multi-center comparison of diagnostic performance based on different dimensional models
    Yang, Yuhua
    Cheng, Jia
    Chen, Liang
    Cui, Can
    Liu, Shaoqiang
    Zuo, Minjing
    THORACIC CANCER, 2024, 15 (31) : 2235 - 2247