This paper deals with the invariant RX\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_X$$\end{document} called the RR-correction term, which appears in the Riemann–Roch and Numerical Adjunction Formulas for normal surface singularities. Typically, RX=δXtop-δXan\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_X=\delta ^\text {top}_X-\delta ^\text {an}_X$$\end{document} decomposes as difference of topological and analytical local invariants of its singularities. The invariant δXtop\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta ^\text {top}_X$$\end{document} is well understood and depends only on the dual graph of a good resolution. The purpose of this paper is to give a new interpretation for δXan\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta ^\text {an}_X$$\end{document}, which in the case of cyclic quotient singularities can be explicitly computed via generic divisors. We also include two types of applications: one is related to the McKay decomposition of reflexive modules in terms of special reflexive modules in the context of the McKay correspondence. The other application answers two questions posed by Blache (Abh Math Semin Univ Hambg 65:307–340, 1995) on the asymptotic behavior of the invariant RX\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_X$$\end{document} of the pluricanonical divisor.