The correction term for the Riemann–Roch formula of cyclic quotient singularities and associated invariants

被引:0
|
作者
José Ignacio Cogolludo-Agustín
Jorge Martín-Morales
机构
[1] Universidad de Zaragoza,Departamento de Matemáticas, IUMA
[2] Academia General Militar,Centro Universitario de la Defensa
来源
关键词
Riemann-Roch; Adjunction formula; Cyclic quotient singularities; McKay correspondence; Reflexive modules; Curvettes; 32S05; 14H50; 32S25; 14F45;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the invariant RX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_X$$\end{document} called the RR-correction term, which appears in the Riemann–Roch and Numerical Adjunction Formulas for normal surface singularities. Typically, RX=δXtop-δXan\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_X=\delta ^\text {top}_X-\delta ^\text {an}_X$$\end{document} decomposes as difference of topological and analytical local invariants of its singularities. The invariant δXtop\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^\text {top}_X$$\end{document} is well understood and depends only on the dual graph of a good resolution. The purpose of this paper is to give a new interpretation for δXan\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^\text {an}_X$$\end{document}, which in the case of cyclic quotient singularities can be explicitly computed via generic divisors. We also include two types of applications: one is related to the McKay decomposition of reflexive modules in terms of special reflexive modules in the context of the McKay correspondence. The other application answers two questions posed by Blache (Abh Math Semin Univ Hambg 65:307–340, 1995) on the asymptotic behavior of the invariant RX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_X$$\end{document} of the pluricanonical divisor.
引用
收藏
页码:419 / 450
页数:31
相关论文
共 4 条
  • [1] The correction term for the Riemann-Roch formula of cyclic quotient singularities and associated invariants
    Ignacio Cogolludo-Agustin, Jose
    Martin-Morales, Jorge
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (02): : 419 - 450
  • [2] Local Invariants on Quotient Singularities and a Genus Formula for Weighted Plane Curves
    Ignacio Cogolludo-Agustin, Jose
    Martin-Morales, Jorge
    Ortigas-Galindo, Jorge
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (13) : 3559 - 3581
  • [3] A remark on the Riemann-Roch formula on affine schemes associated with Noetherian local rings
    Kurano, K
    TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (01) : 121 - 138
  • [4] Long-Term Follow-up of Hypophosphatemic Bone Disease Associated With Elemental Formula Use: Sustained Correction of Bone Disease After Formula Change or Phosphate Supplementation
    Eswarakumar, Abigail S.
    Ma, Nina S.
    Ward, Leanne M.
    Backeljauw, Philippe
    Wasserman, Halley
    Weber, David R.
    DiMeglio, Linda A.
    Imel, Erik A.
    Gagne, Julie
    Cody, Declan
    Zimakas, Paul
    Topor, Lisa Swartz
    Agrawal, Sungeeta
    Calabria, Andrew
    Tebben, Peter
    Faircloth, Ruth S.
    Gordon, Rebecca
    Casey, Linda
    Carpenter, Thomas O.
    CLINICAL PEDIATRICS, 2020, 59 (12) : 1080 - 1085