Gauge theories on κ-Minkowski spaces: twist and modular operators

被引:25
|
作者
Mathieu, Philippe [1 ]
Wallet, Jean-Christophe [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Paris Saclay, CNRS, IJCLab, F-91405 Orsay, France
关键词
Non-Commutative Geometry; Gauge Symmetry; Models of Quantum Gravity; FIELD-THEORY; ALGEBRA; TIME; RENORMALIZATION; DEFORMATION; MODELS;
D O I
10.1007/JHEP05(2020)112
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the construction of kappa -Poincare invariant actions for gauge theories on kappa -Minkowski spaces. We consider various classes of untwisted and (bi)twisted differential calculi. Starting from a natural class of noncommutative differential calculi based on a particular type of twisted derivations belonging to the algebra of deformed translations, combined with a twisted extension of the notion of connection, we prove an algebraic relation between the various twists and the classical dimension d of the kappa -Minkowski space(-time) ensuring the gauge invariance of the candidate actions for gauge theories. We show that within a natural differential calculus based on a distinguished set of twisted derivations, d=5 is the unique value for the classical dimension at which the gauge action supports both the gauge invariance and the kappa -Poincare invariance. Within standard (untwisted) differential calculi, we show that the full gauge invariance cannot be achieved, although an invariance under a group of transformations constrained by the modular (Tomita) operator stemming from the kappa -Poincare invariance still holds.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Gauge theories on the κ-Minkowski spacetime
    Dimitrijevic, M
    Meyer, F
    Möller, L
    Wess, J
    EUROPEAN PHYSICAL JOURNAL C, 2004, 36 (01): : 117 - 126
  • [2] Modular and duality properties of surface operators in N=2*gauge theories
    Ashok, S. K.
    Billo, M.
    Dell'Aquila, E.
    Frau, M.
    John, R. R.
    Lerda, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [3] Gauge invariant operators in field theories on non-commutative spaces
    Dorn, H
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2002, 50 (8-9): : 884 - 889
  • [4] Quantum instability of gauge theories on ?-Minkowski space
    Hersent, Kilian
    Mathieu, Philippe
    Wallet, Jean-Christophe
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [5] Gauge Theories on Deformed Spaces
    Blaschke, Daniel N.
    Kronberger, Erwin
    Sedmik, Rene I. P.
    Wohlgenannt, Michael
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [6] Gauge theories on quantum spaces
    Hersent, Kilian
    Mathieu, Philippe
    Wallet, Jean-Christophe
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1014 : 1 - 83
  • [7] Gauge theories on noncommutative spaces
    Wess, J
    PARTICLE PHYSICS IN THE NEW MILLENNIUM, 2003, 616 : 320 - 332
  • [8] Gauge theory on kappa-Minkowski revisited: the twist approach
    Dimitrijevic, Marija
    Jonke, Larisa
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [9] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    V. G. Kupriyanov
    M. A. Kurkov
    P. Vitale
    Journal of High Energy Physics, 2023
  • [10] Twisted BRST symmetry in gauge theories on the κ-Minkowski spacetime
    Mathieu, Philippe
    Wallet, Jean-Christophe
    PHYSICAL REVIEW D, 2021, 103 (08)