TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} partition function from topological gravity

被引:0
|
作者
Sergei Dubovsky
Victor Gorbenko
Guzmán Hernández-Chifflet
机构
[1] New York University,Center for Cosmology and Particle Physics, Department of Physics
[2] Stanford University,Stanford Institute for Theoretical Physics
[3] Universidad de la República,Instituto de Física, Facultad de Ingeniería
关键词
2D Gravity; Field Theories in Lower Dimensions;
D O I
10.1007/JHEP09(2018)158
中图分类号
学科分类号
摘要
The TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation of a relativistic two-dimensional theory results in a solvable gravitational theory. Deformed scattering amplitudes can be obtained from coupling the undeformed theory to the flat space Jackiw-Teitelboim (JT) gravity. We show that the JT description is applicable and useful also in finite volume. Namely, we calculate the torus partition function of an arbitrary matter theory coupled to the JT gravity, formulated in the first order (vielbein) formalism. The first order description provides a natural set of dynamical clocks and rods for this theory, analogous to the target space coordinates in string theory. These dynamical coordinates play the role of relational observables allowing to define a torus path integral for the JT gravity. The resulting partition function is one-loop exact and reproduces the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed finite volume spectrum.
引用
收藏
相关论文
共 50 条