Cosmology and thermodynamics of FLRW universe with bulk viscous stiff fluid

被引:0
|
作者
Titus K. Mathew
M. B. Aswathy
M. Manoj
机构
[1] Cochin University of Science and Technology,Department of Physics
来源
关键词
Dark Matter; Dark Energy; Hubble Parameter; Bulk Viscosity; Deceleration Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a cosmological model dominated by a stiff fluid with a constant bulk viscosity. We classify all the possible cases of the universe predicted by the model and analyze the scale factor and the density as well as the curvature scalar. We find that when the dimensionless constant bulk viscous parameter is in the range 0<ζ¯<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \bar{\zeta }<6$$\end{document} the model begins with a big bang and makes a transition from the decelerating expansion epoch to an accelerating epoch and then tends to the de Sitter phase as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\rightarrow \infty $$\end{document}. The transition into the accelerating epoch would be in the recent past when 4<ζ¯<6.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4<\bar{\zeta }<6.$$\end{document} For ζ¯>6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\zeta }>6$$\end{document} the model does not have a big bang and shows an increase in the fluid density and scalar curvature as the universe expands which eventually saturates as the scale factor a→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \rightarrow \infty $$\end{document} in the future. We have analyzed the model with statefinder diagnostics and find that the model is different from the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM model but approaches the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}CDM point as a→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \rightarrow \infty $$\end{document}. We have also analyzed the status of the generalized second law of thermodynamics with an apparent horizon as the boundary of the universe and found that the law is generally satisfied when 0≤ζ¯<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \bar{\zeta }<6$$\end{document}, and for ζ¯>6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\zeta }>6$$\end{document} the law is satisfied when the scale factor is larger than a minimum value.
引用
收藏
相关论文
共 50 条