Superposition for Higher-Order Logic

被引:0
|
作者
Alexander Bentkamp
Jasmin Blanchette
Sophie Tourret
Petar Vukmirović
机构
[1] Chinese Academy of Sciences,State Key Laboratory of Computer Science, Institute of Software
[2] Vrije Universiteit Amsterdam,Department of Computer Science, Section of Theoretical Computer Science
[3] Université de Lorraine,undefined
[4] CNRS,undefined
[5] Inria,undefined
[6] LORIA,undefined
[7] Max-Planck-Institut für Informatik,undefined
来源
关键词
Superposition calculus; Higher-order logic; Refutational completeness;
D O I
暂无
中图分类号
学科分类号
摘要
We recently designed two calculi as stepping stones towards superposition for full higher-order logic: Boolean-free λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-superposition and superposition for first-order logic with interpreted Booleans. Stepping on these stones, we finally reach a sound and refutationally complete calculus for higher-order logic with polymorphism, extensionality, Hilbert choice, and Henkin semantics. In addition to the complexity of combining the calculus’s two predecessors, new challenges arise from the interplay between λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-terms and Booleans. Our implementation in Zipperposition outperforms all other higher-order theorem provers and is on a par with an earlier, pragmatic prototype of Booleans in Zipperposition.
引用
收藏
相关论文
共 50 条
  • [1] Superposition for Higher-Order Logic
    Bentkamp, Alexander
    Blanchette, Jasmin
    Tourret, Sophie
    Vukmirovic, Petar
    JOURNAL OF AUTOMATED REASONING, 2023, 67 (01)
  • [2] Superposition for Full Higher-order Logic
    Bentkamp, Alexander
    Blanchette, Jasmin
    Tourret, Sophie
    Vukmirovic, Petar
    AUTOMATED DEDUCTION, CADE 28, 2021, 12699 : 396 - 412
  • [3] Superposition for Lambda-Free Higher-Order Logic
    Bentkamp, Alexander
    Blanchette, Jasmin Christian
    Cruanes, Simon
    Waldmann, Uwe
    AUTOMATED REASONING, IJCAR 2018, 2018, 10900 : 28 - 46
  • [4] SUPERPOSITION FOR LAMBDA-FREE HIGHER-ORDER LOGIC
    Bentkamp, Alexander
    Blanchette, Jasmin
    Cruanes, Simon
    Waldmann, Uwe
    LOGICAL METHODS IN COMPUTER SCIENCE, 2021, 17 (02) : 1:1 - 1:38
  • [5] A Combinator-Based Superposition Calculus for Higher-Order Logic
    Bhayat, Ahmed
    Reger, Giles
    AUTOMATED REASONING, PT I, 2020, 12166 : 278 - 296
  • [6] ON HIGHER-ORDER LOGIC
    KOGALOVS.SR
    DOKLADY AKADEMII NAUK SSSR, 1966, 171 (06): : 1272 - &
  • [7] Making Higher-Order Superposition Work
    Vukmirovic, Petar
    Bentkamp, Alexander
    Blanchette, Jasmin
    Cruanes, Simon
    Nummelin, Visa
    Tourret, Sophie
    AUTOMATED DEDUCTION, CADE 28, 2021, 12699 : 415 - 432
  • [8] Higher-order superposition for dependent types
    Virga, R
    REWRITING TECHNIQUES AND APPLICATIONS, 1996, 1103 : 123 - 137
  • [9] Making Higher-Order Superposition Work
    Petar Vukmirović
    Alexander Bentkamp
    Jasmin Blanchette
    Simon Cruanes
    Visa Nummelin
    Sophie Tourret
    Journal of Automated Reasoning, 2022, 66 : 541 - 564
  • [10] Making Higher-Order Superposition Work
    Vukmirovic, Petar
    Bentkamp, Alexander
    Blanchette, Jasmin
    Cruanes, Simon
    Nummelin, Visa
    Tourret, Sophie
    JOURNAL OF AUTOMATED REASONING, 2022, 66 (04) : 541 - 564