The lateral deformation properties of oriented polymer fibres were examined by transverse compressive and torsional experiments. A modified interfacial test system machine was used to study the transverse compressive deformation behaviour of thermally cross-linkable poly(p-1,2-dihydrocyclobutaphenylene terephthalamide) (PPXTA) fibres and of a number of commercially available polymers (Nomex, nylon, Kevlar, Dacron) and ceramic (Nicalon and FP) fibres. The torsional (shear) modulus G of PPXTA and Kevlar poly(p-phenylene terephthalamide) (PPTA) fibres was measured by pendulum experiments. During both fibre torsion and transverse compression, the deformation involves materials slip on (h k 0) planes, in the [0 0 1] direction for the torsion and the [h k 0] directions for transverse compression. The intermolecular crosslinks in PPXTA did not significantly modify the elastic transverse modulus Et and caused only slight (13%) increase in shear modulus G. However, the plastic transverse properties of cross-linked PPXTA were significantly different than those of uncross-linked PPXTA. The stress at the proportional limit σp, determined from the transverse load–displacement curves, was substantially higher for the cross-linked fibres than for the uncross-linked fibres. In addition, the cross-linked PPXTA fibres exhibited a large strain recoverable response reminiscent of elastomers, whereas the PPTA and uncross-linked PPXTA fibres exhibited a large strain irreversible response.