Quantization of integrable systems and a 2d/4d duality

被引:0
|
作者
Nick Dorey
Sungjay Lee
Timothy J. Hollowood
机构
[1] University of Cambridge,DAMTP, Centre for Mathematical Sciences
[2] Swansea University,Department of Physics
关键词
Supersymmetry and Duality; Supersymmetric gauge theory; Bethe Ansatz;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new duality between the F-terms of supersymmetric field theories defined in two-and four-dimensions respectively. The duality relates \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} super-symmetric gauge theories in four dimensions, deformed by an Ω-background in one plane, to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = \left( {2,2} \right) $\end{document} gauged linear σ-models in two dimensions. On the four dimensional side, our main example is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} SQCD with gauge group G = SU(L) and NF = 2 L fundamental flavours. Using ideas of Nekrasov and Shatashvili, we argue that the Coulomb branch of this theory provides a quantization of the classical Heisenberg SL(2) spin chain. Agreement with the standard quantization via the Algebraic Bethe Ansatz implies the existence of an isomorphism between the chiral ring of the 4 d theory and that of a certain two-dimensional theory. The latter can be understood as the worldvolume theory on a surface operator/vortex string probing the Higgs branch of the same 4 d theory. We check the proposed duality by explicit calculation at low orders in the instanton expansion. One striking consequence is that the Seiberg-Witten solution of the 4 d theory is captured by a one-loop computation in two dimensions. The duality also has interesting connections with the AGT conjecture, matrix models and topological string theory where it corresponds to a refined version of the geometric transition.
引用
收藏
相关论文
共 50 条
  • [1] Quantization of integrable systems and a 2d/4d duality
    Dorey, Nick
    Lee, Sungjay
    Hollowood, Timothy J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [2] A new 2d/4d duality via integrability
    Heng-Yu Chen
    Nick Dorey
    Timothy J. Hollowood
    Sungjay Lee
    Journal of High Energy Physics, 2011
  • [3] A new 2d/4d duality via integrability
    Chen, Heng-Yu
    Dorey, Nick
    Hollowood, Timothy J.
    Lee, Sungjay
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [4] 2D Integrable systems, 4D Chern–Simons theory and affine Higgs bundles
    A. Levin
    M. Olshanetsky
    A. Zotov
    The European Physical Journal C, 82
  • [5] 2D Integrable systems, 4D Chern-Simons theory and affine Higgs bundles
    Levin, A.
    Olshanetsky, M.
    Zotov, A.
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (07):
  • [6] T-duality in 2D integrable models
    Gomes, JF
    Sotkov, M
    Zimerman, AH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (16): : 4629 - 4640
  • [7] 4d N=1/2d Yang-Mills duality in holography
    Fluder, Martin
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):
  • [9] Latitudinal Gradient in 2D:4D
    Helle, Samuli
    Laaksonen, Toni
    ARCHIVES OF SEXUAL BEHAVIOR, 2009, 38 (01) : 1 - 3
  • [10] Latitudinal Gradient in 2D:4D
    Samuli Helle
    Toni Laaksonen
    Archives of Sexual Behavior, 2009, 38 : 1 - 3