We establish several new functional inequalities comparing Boltzmann's entropy production functional with the relative H functional. First we prove a longstanding conjecture by Cercignani under the nonphysical assumption that the Boltzmann collision kernel is superquadratic at infinity. The proof rests on the method introduced in [39] combined with a novel use of the Blachman-Stam inequality. If the superquadraticity assumption is not satisfied, then it is known that Cercignani's conjecture is not true; however we establish a slightly weakened version of it for all physically relevant collision kernels, thus extending previous results from [39]. Finally, we consider the entropy-entropy production version of Kac's spectral gap problem and obtain estimates about the dependence of the constants with respect to the dimension. The first two results are sharp in some sense, and the third one is likely to be, too; they contain all previously known entropy estimates as particular cases. This gives a first coherent picture of the study of entropy production, according to a program started by Carlen and Carvalho [12] ten years ago. These entropy inequalities are one step in our study of the trend to equilibrium for the Boltzmann equation, in both its spatially homogeneous and spatially inhomogeneous versions.
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
Xie, Mingliang
Liu, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Wenhua Coll, Dept Foreign Language, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
机构:
Mississippi State Univ, Dept Math & Stat, PO Drawer MA, Mississippi State, MS 39762 USAMississippi State Univ, Dept Math & Stat, PO Drawer MA, Mississippi State, MS 39762 USA