Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth

被引:0
|
作者
Chunlin You
Qizhong Lin
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Yancheng Teachers University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Ramsey number; Small bandwidth; Cycle; Regularity Lemma; 05C55; 05D10;
D O I
暂无
中图分类号
学科分类号
摘要
A graph H=(W,EH)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}=(W,E_\mathcal {H})$$\end{document} is said to have bandwidth at most b if there exists a labeling of W as w1,w2,⋯,wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_1,w_2,\dots ,w_n$$\end{document} such that |i-j|≤b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|i-j|\le b$$\end{document} for every edge wiwj∈EH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_iw_j\in E_\mathcal {H}$$\end{document}. We say that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is a balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph if it is a bipartite graph with bandwidth at most β|W|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta |W|$$\end{document} and maximum degree at most Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, and it also has a proper 2-coloring χ:W→[2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi :W\rightarrow [2]$$\end{document} such that ||χ-1(1)|-|χ-1(2)||≤β|χ-1(2)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$||\chi ^{-1}(1)|-|\chi ^{-1}(2)||\le \beta |\chi ^{-1}(2)|$$\end{document}. In this paper, we prove that for every γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} and every natural number Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, there exists a constant β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document} such that for every balanced (β,Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\beta ,\Delta )$$\end{document}-graph H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} on n vertices we have R(H,H,Cn)≤(3+γ)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}R(\mathcal {H}, \mathcal {H}, C_n) \le (3+\gamma )n\end{aligned}$$\end{document}for all sufficiently large odd n. The upper bound is sharp for several classes of graphs. Let θn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{n,t}$$\end{document} be the graph consisting of t internally disjoint paths of length n all sharing the same endpoints. As a corollary, for each fixed t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 1$$\end{document}, R(θn,t,θn,t,Cnt+λ)=(3t+o(1))n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(\theta _{n, t},\theta _{n, t}, C_{nt+\lambda })=(3t+o(1))n,$$\end{document} where λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document} if nt is odd and λ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1$$\end{document} if nt is even. In particular, we have R(C2n,C2n,C2n+1)=(6+o(1))n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(C_{2n},C_{2n}, C_{2n+1})=(6+o(1))n$$\end{document}, which is a special case of a result of Figaj and Łuczak (2018).
引用
收藏
相关论文
共 50 条
  • [1] Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth
    You, Chunlin
    Lin, Qizhong
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [2] THREE-COLOR BIPARTITE RAMSEY NUMBER FOR GRAPHS WITH SMALL BANDWIDTH
    Mota, G. O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 197 - 208
  • [3] Bipartite Ramsey numbers for bipartite graphs of small bandwidth
    Shen, Lili
    Lin, Qizhong
    Liu, Qinghai
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [4] On Three-Color Ramsey Number of Paths
    L. Maherani
    G. R. Omidi
    G. Raeisi
    M. Shahsiah
    Graphs and Combinatorics, 2015, 31 : 2299 - 2308
  • [5] On Three-Color Ramsey Number of Paths
    Maherani, L.
    Omidi, G. R.
    Raeisi, G.
    Shahsiah, M.
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2299 - 2308
  • [6] Ramsey numbers for bipartite graphs with small bandwidth
    Mota, G. O.
    Sarkoezy, G. N.
    Schacht, M.
    Taraz, A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 165 - 176
  • [7] Ramsey numbers of large books and bipartite graphs with small bandwidth
    You, Chunlin
    Lin, Qizhong
    Chen, Xun
    DISCRETE MATHEMATICS, 2021, 344 (07)
  • [8] The Multi-Color Ramsey Number of an Odd Cycle
    Li, Yusheng
    JOURNAL OF GRAPH THEORY, 2009, 62 (04) : 324 - 328
  • [9] SIZE RAMSEY NUMBER OF BIPARTITE GRAPHS AND BIPARTITE RAMANUJAN GRAPHS
    Javadi, R.
    Khoeini, F.
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (02) : 45 - 51
  • [10] Three color Ramsey numbers for small graphs
    Arste, J
    Klamroth, K
    Mengersen, I
    UTILITAS MATHEMATICA, 1996, 49 : 85 - 96