Amplitude spectroscopy of a solid-state artificial atom

被引:0
|
作者
David M. Berns
Mark S. Rudner
Sergio O. Valenzuela
Karl K. Berggren
William D. Oliver
Leonid S. Levitov
Terry P. Orlando
机构
[1] Department of Physics,Department of Electrical Engineering and Computer Science
[2] ,undefined
[3] Research Laboratory for Electronics,undefined
[4] ,undefined
[5] Francis Bitter Magnet Laboratory,undefined
[6] Massachusetts Institute of Technology,undefined
[7] Cambridge,undefined
[8] Massachusetts 02139,undefined
[9] USA ,undefined
[10] Lincoln Laboratory,undefined
[11] Massachusetts Institute of Technology,undefined
[12] 244 Wood Street,undefined
[13] Lexington,undefined
[14] Massachusetts 02420,undefined
[15] USA ,undefined
[16] Massachusetts Institute of Technology,undefined
[17] Cambridge,undefined
[18] Massachusetts 02139,undefined
[19] USA,undefined
[20] Present addresses: ICREA and Centre d’Investigacions en Nanociència i Nanotecnologia,undefined
[21] UAB Campus,undefined
[22] 08193 Bellaterra,undefined
[23] Spain (S.O.V.); Department of Electrical Engineering and Computer Science,undefined
[24] Massachusetts Institute of Technology,undefined
[25] Cambridge,undefined
[26] Massachusetts 02139,undefined
[27] USA (K.K.B.).,undefined
来源
Nature | 2008年 / 455卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system’s response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting ‘spectroscopy diamonds’, the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom’s spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.
引用
收藏
页码:51 / 57
页数:6
相关论文
共 50 条
  • [1] Amplitude spectroscopy of a solid-state artificial atom
    Berns, David M.
    Rudner, Mark S.
    Valenzuela, Sergio O.
    Berggren, Karl K.
    Oliver, William D.
    Levitov, Leonid S.
    Orlando, Terry P.
    NATURE, 2008, 455 (7209) : 51 - U32
  • [2] Coherent manipulation of a solid-state artificial atom with few photons
    V. Giesz
    N. Somaschi
    G. Hornecker
    T. Grange
    B. Reznychenko
    L. De Santis
    J. Demory
    C. Gomez
    I. Sagnes
    A. Lemaître
    O. Krebs
    N. D. Lanzillotti-Kimura
    L. Lanco
    A. Auffeves
    P. Senellart
    Nature Communications, 7
  • [3] SOLID-STATE PHYSICS - ARTIFICIAL ATOM UNVEILS QUANTUM EFFECTS
    FLAM, F
    SCIENCE, 1993, 261 (5123) : 832 - 832
  • [4] Coherent manipulation of a solid-state artificial atom with few photons
    Giesz, V.
    Somaschi, N.
    Hornecker, G.
    Grange, T.
    Reznychenko, B.
    De Santis, L.
    Demory, J.
    Gomez, C.
    Sagnes, I.
    Lemaitre, A.
    Krebs, O.
    Lanzillotti-Kimura, N. D.
    Lanco, L.
    Auffeves, A.
    Senellart, P.
    NATURE COMMUNICATIONS, 2016, 7
  • [5] PERFORMANCE OF AN AMPLITUDE FOURIER SPECTROMETER FOR FAR-INFRARED SOLID-STATE SPECTROSCOPY
    GAST, J
    GENZEL, L
    ZWICK, U
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1974, MT22 (12) : 1026 - 1027
  • [6] SPECTROSCOPY OF THE SOLID-STATE ANALOGS OF THE HYDROGEN-ATOM - DONORS AND ACCEPTORS IN SEMICONDUCTORS
    RAMDAS, AK
    RODRIGUEZ, S
    REPORTS ON PROGRESS IN PHYSICS, 1981, 44 (12) : 1297 - 1387
  • [7] Solid-state NMR spectroscopy
    Paiva, Stacey-Lynn
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [8] Solid-state NMR spectroscopy
    Bernd Reif
    Sharon E. Ashbrook
    Lyndon Emsley
    Mei Hong
    Nature Reviews Methods Primers, 1
  • [9] Solid-state NMR spectroscopy
    Hodgkinson, Paul
    Wimperis, Stephen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (32) : 6875 - 6875
  • [10] PROBLEMS IN SOLID-STATE SPECTROSCOPY
    MOLLER, CK
    CHIMIA, 1972, 26 (06) : 299 - &