Spider wasp optimizer: a novel meta-heuristic optimization algorithm

被引:0
|
作者
Mohamed Abdel-Basset
Reda Mohamed
Mohammed Jameel
Mohamed Abouhawwash
机构
[1] Zagazig University,Faculty of Computers and Informatics
[2] Sana’a University,Department of Mathematics
[3] Mansoura University,Department of Mathematics, Faculty of Science
[4] Michigan State University,Department of Computational Mathematics, Science, and Engineering (CMSE)
来源
关键词
Spider wasp optimizer; Engineering design problems; Constrained optimization; Stochastic optimization; Metaheuristic;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a new nature-inspired meta-heuristic algorithm named spider wasp optimization (SWO) algorithm, which is based on replicating the hunting, nesting, and mating behaviors of the female spider wasps in nature. This proposed algorithm has various unique updating strategies, making it applicable to a wide range of optimization problems with different exploration and exploitation requirements. The proposed SWO is compared with nine newly published and well-established metaheuristics over four different benchmarks: (1) Standard benchmark, including 23 unimodal and multimodal test functions; (2) test suite of CEC2017, (3) test suite of CEC2020, and (4) test suite of CEC2014 to validate its reliability. Moreover, two classical engineering design problems, namely, welded bean and pressure vessel designs, and parameter estimation of the single-diode, double-diode, and triple-diode photovoltaic models are used to further evaluate the performance of SWO in optimizing real-world optimization problems. Experimental findings demonstrate that SWO is more competitive compared with the state-of-art meta-heuristic methods for four validated benchmarks and superior to all observed real-world optimization problems. Specifically, SWO achieves an overall effective percentage of 78.2% on the standard benchmark, 92.31% on CEC2014, 77.78% on CEC2017, 60% on CEC2020, and 100% on real-world problems. The source code of SWO is publicly available at https://www.mathworks.com/matlabcentral/fileexchange/126010-spider-wasp-optimizer-swo.
引用
收藏
页码:11675 / 11738
页数:63
相关论文
共 50 条
  • [1] Spider wasp optimizer: a novel meta-heuristic optimization algorithm
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Jameel, Mohammed
    Abouhawwash, Mohamed
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (10) : 11675 - 11738
  • [2] Snake Optimizer: A novel meta-heuristic optimization algorithm
    Hashim, Fatma A.
    Hussien, Abdelazim G.
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [3] Aquila Optimizer: A novel meta-heuristic optimization algorithm
    Abualigah, Laith
    Yousri, Dalia
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Al-qaness, Mohammed A. A.
    Gandomi, Amir H.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
  • [4] Hermit Crab Optimizer (HCO): A Novel Meta-heuristic Algorithm
    Tafakkori, Keivan
    Tavakkoli-Moghaddam, Reza
    IFAC PAPERSONLINE, 2022, 55 (10): : 702 - 707
  • [5] Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
    Xue, Jiankai
    Shen, Bo
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (07): : 7305 - 7336
  • [6] Dung beetle optimizer: a new meta-heuristic algorithm for global optimization
    Jiankai Xue
    Bo Shen
    The Journal of Supercomputing, 2023, 79 : 7305 - 7336
  • [7] A new meta-heuristic optimizer: Pathfinder algorithm
    Yapici, Hamza
    Cetinkaya, Nurettin
    APPLIED SOFT COMPUTING, 2019, 78 : 545 - 568
  • [8] Polar fox optimization algorithm: a novel meta-heuristic algorithm
    Ghiaskar, Ahmad
    Amiri, Amir
    Mirjalili, Seyedali
    Neural Computing and Applications, 2024, 36 (33) : 20983 - 21022
  • [9] A novel meta-heuristic optimization algorithm: Thermal exchange optimization
    Kaveh, A.
    Dadras, A.
    ADVANCES IN ENGINEERING SOFTWARE, 2017, 110 : 69 - 84
  • [10] A novel hybrid meta-heuristic algorithm for optimization problems
    Gai, Wendong
    Qu, Chengzhi
    Liu, Jie
    Zhang, Jing
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (03) : 64 - 73