Enhancement of biogas production from organic fraction of municipal solid waste using alkali pretreatment

被引:0
|
作者
Arpita Dasgupta
Munish Kumar Chandel
机构
[1] Indian Institute of Technology Bombay,Environmental Science and Engineering Department
关键词
Alkali pretreatment; Anaerobic digestion; Biogas; Municipal solid waste; India;
D O I
暂无
中图分类号
学科分类号
摘要
Anaerobic digestion is one of the most prospective and economical techniques to recover energy and simultaneously treat organic fraction of municipal solid waste (OFMSW). However, more often than not, the complex polymeric structure of lignocellulosic fraction and high lipid content of Indian OFMSW prove to be hindrances in realizing the full potential of energy recovery through anaerobic digestion. Pretreatment of OFMSW is an effective method to enhance the efficiency of anaerobic digestion. This paper explores the effect of alkali pretreatment on change in characteristics of OFMSW in India and its subsequent impact on biogas generation. Pretreatment was carried out using 5 M sodium hydroxide (NaOH) solution and varying the initial pH of OFMSW in the range of 8–13 for 24 h. Thereafter, batch anaerobic digestion assays of untreated and pretreated OFMSW were carried out using cow excrement as inoculum. Results indicate that NaOH pretreatment was advantageous in solubilizing the organic matter of OFMSW, thus increasing biogas yield and reduced digestion time. The cumulative biogas generation increased by 19.6–34.8% post-NaOH pretreatment. OFMSW pretreated with NaOH at pH 10 had maximum biogas yield of 407.1 mL/gVS with 68.9% methane content, as compared to 301.9 mL/gVS and 50.3% of untreated OFMSW. A preliminary cost assessment indicated a positive net profit for pretreatment of OFMSW with NaOH at pH ranges of 8–10.
引用
收藏
页码:757 / 767
页数:10
相关论文
共 50 条
  • [1] Enhancement of biogas production from organic fraction of municipal solid waste using alkali pretreatment
    Dasgupta, Arpita
    Chandel, Munish Kumar
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2020, 22 (03) : 757 - 767
  • [2] Enhancement of biogas production from organic fraction of municipal solid waste using acid pretreatment
    Dasgupta, Arpita
    Chandel, Munish K.
    SN APPLIED SCIENCES, 2020, 2 (08):
  • [3] Enhancement of biogas production from organic fraction of municipal solid waste using acid pretreatment
    Arpita Dasgupta
    Munish K. Chandel
    SN Applied Sciences, 2020, 2
  • [4] Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment
    Dasgupta A.
    Chandel M.K.
    Bioresource Technology Reports, 2019, 7
  • [5] Biogas production from the organic fraction of municipal solid waste
    Demirbas, Ayhan
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2006, 28 (12) : 1127 - 1134
  • [6] Optimization of biogas production from organic fraction of municipal solid waste: Experimental test using liquid from waste fermentation
    Nikiema, Mahamadi
    Barsan, Narcis
    Somda, Marius K.
    Traore, Desiré
    Dianou, Dayéri
    Nedeff, Valentin
    Traore, Alfred S.
    Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 2017, 18 (02): : 213 - 224
  • [7] INFLUENCE OF ORGANIC FRACTION OF MUNICIPAL SOLID WASTE PARTICLE SIZE ON BIOGAS PRODUCTION
    Basaria, Paraginta
    Priadi, Cindy Rianti
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2016, 7 (08) : 1430 - 1436
  • [8] Parametric Evaluation of Digestability of Organic Fraction of Municipal Solid Waste for Biogas Production
    Mondal, Monoj K.
    Banerjee, Aparna
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2015, 3 (04): : 416 - 424
  • [9] Barriers in biogas production from the organic fraction of municipal solid waste: A circular bioeconomy perspective
    Yadav, Priyanka
    Yadav, Sudeep
    Singh, Dhananjay
    Giri, Balendu Shekher
    Mishra, P. K.
    BIORESOURCE TECHNOLOGY, 2022, 362
  • [10] Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste
    Pavi, Suelen
    Kramer, Luis Eduardo
    Gomes, Luciana Paulo
    Schiavo Miranda, Luis Alcides
    BIORESOURCE TECHNOLOGY, 2017, 228 : 362 - 367