Hybrid Runge–Kutta methods for ordinary differential equations

被引:0
|
作者
Zhongli Liu
Jintao Hu
Hongjiong Tian
机构
[1] Shanghai University of International Business and Economics,School of Statistics and Information
[2] Shanghai Normal University,Department of Mathematics
来源
Computational and Applied Mathematics | 2020年 / 39卷
关键词
Hybrid Runge–Kutta method; Order conditions; Stability; A-stability; L-stability; 65L05; 65L06;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a class of s-stage hybrid Runge–Kutta methods for solving ordinary differential equations and study their order conditions and numerical stability property. Examples of second-, third-, and fifth-order hybrid Runge–Kutta methods are given. Numerical experiments are conducted to demonstrate the efficiency of the proposed methods.
引用
收藏
相关论文
共 50 条
  • [1] Hybrid Runge-Kutta methods for ordinary differential equations
    Liu, Zhongli
    Hu, Jintao
    Tian, Hongjiong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [2] Runge-Kutta Methods for Ordinary Differential Equations
    Butcher, J. C.
    NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 37 - 58
  • [3] Runge-Kutta methods for linear ordinary differential equations
    Zingg, DW
    Chisholm, TT
    APPLIED NUMERICAL MATHEMATICS, 1999, 31 (02) : 227 - 238
  • [4] Runge-Kutta methods for quadratic ordinary differential equations
    Arieh Iserles
    Geetha Ramaswami
    Mark Sofroniou
    BIT Numerical Mathematics, 1998, 38 : 315 - 346
  • [5] Runge-Kutta methods for quadratic ordinary differential equations
    Iserles, A
    Ramaswami, G
    Sofroniou, M
    BIT NUMERICAL MATHEMATICS, 1998, 38 (02) : 315 - 346
  • [6] Improved Runge-Kutta Methods for Solving Ordinary Differential Equations
    Rabiei, Faranak
    Ismail, Fudziah
    Suleiman, Mohamed
    SAINS MALAYSIANA, 2013, 42 (11): : 1679 - 1687
  • [7] Regularity properties of Runge-Kutta methods for ordinary differential equations
    Jackiewicz, Z
    Vermiglio, R
    Zennaro, M
    APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) : 251 - 262
  • [8] Partitioning ordinary differential equations using Runge-Kutta methods
    Suleiman, MB
    Ismail, FB
    Ariffin, K
    Atan, BM
    APPLIED MATHEMATICS AND COMPUTATION, 1996, 79 (2-3) : 289 - 309
  • [9] Stability of runge-kutta methods for stiff ordinary differential equations
    Alexander, Roger K.
    SIAM Journal on Numerical Analysis, 1994, 31 (04): : 1147 - 1168
  • [10] Implicit Runge-Kutta methods for lipschitz continuous ordinary differential equations
    Chen, Xiaojun
    Mahmoud, Sayed
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1266 - 1280