Shock profiles for the asymmetric simple exclusion process in one dimension

被引:0
|
作者
B. Derrida
J. L. Lebowitz
E. R. Speer
机构
[1] Ecole Normale Supérieure,Laboratoire de Physique Statistique
[2] Institut des Hautes Etudes Scientifiques,Department of Mathematics
[3] Rutgers University,undefined
来源
关键词
Asymmetric simple exclusion process; weakly asymmetric limit; shock profiles; second class particles, Burgers equation;
D O I
暂无
中图分类号
学科分类号
摘要
The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice is a system of particles which jump at ratesp and 1-p (herep > 1/2) to adjacent empty sites on their right and left respectively. The system is described on suitable macroscopic spatial and temporal scales by the inviscid Burgers’ equation; the latter has shock solutions with a discontinuous jump from left density ρ- to right density ρ+, ρ-< ρ +, which travel with velocity (2p−1 )(1−ρ+−p−). In the microscopic system we may track the shock position by introducing a second class particle, which is attracted to and travels with the shock. In this paper we obtain the time-invariant measure for this shock solution in the ASEP, as seen from such a particle. The mean density at lattice siten, measured from this particle, approachesp± at an exponential rate asn→ ±∞, witha characteristic length which becomes independent ofp when\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p/(1 - p) > \sqrt {p_ + (1 - p_ - )/p_ - (1 - p_ + )} $$ \end{document}. For a special value of the asymmetry, given byp/(1−p)=p+(1−p−)/p−(1−p+), the measure is Bernoulli, with densityρ− on the left andp+ on the right. In the weakly asymmetric limit, 2p−1 → 0, the microscopic width of the shock diverges as (2p+1)-1. The stationary measure is then essentially a superposition of Bernoulli measures, corresponding to a convolution of a density profile described by the viscous Burgers equation with a well-defined distribution for the location of the second class particle.
引用
收藏
页码:135 / 167
页数:32
相关论文
共 50 条
  • [1] Shock profiles for the asymmetric simple exclusion process in one dimension
    Derrida, B
    Lebowitz, JL
    Speer, ER
    JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (1-2) : 135 - 167
  • [2] EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES
    DERRIDA, B
    JANOWSKY, SA
    LEBOWITZ, JL
    SPEER, ER
    JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) : 813 - 842
  • [3] Exact steady states in the asymmetric simple exclusion process beyond one dimension
    Ishiguro, Yuki
    Sato, Jun
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [4] SHOCK FLUCTUATIONS IN THE ASYMMETRIC SIMPLE EXCLUSION PROCESS
    FERRARI, PA
    FONTES, LRG
    PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) : 305 - 319
  • [5] SHOCK FLUCTUATIONS IN ASYMMETRIC SIMPLE EXCLUSION
    FERRARI, PA
    PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (01) : 81 - 101
  • [6] SHOCK FLUCTUATIONS IN THE 2-DIMENSIONAL ASYMMETRIC SIMPLE EXCLUSION PROCESS
    ALEXANDER, FJ
    CHENG, ZM
    JANOWSKY, SA
    LEBOWITZ, JL
    JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (5-6) : 761 - 785
  • [7] Blocks in the asymmetric simple exclusion process
    Tracy, Craig A.
    Widom, Harold
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [8] THE WEAKLY ASYMMETRIC SIMPLE EXCLUSION PROCESS
    DEMASI, A
    PRESUTTI, E
    SCACCIATELLI, E
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1989, 25 (01): : 1 - 38
  • [9] Brownian Asymmetric Simple Exclusion Process
    Lips, Dominik
    Ryabov, Artem
    Maass, Philipp
    PHYSICAL REVIEW LETTERS, 2018, 121 (16)
  • [10] THE ASYMMETRIC SIMPLE EXCLUSION PROCESS ON ZD
    ANDJEL, ED
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 58 (03): : 423 - 432