On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains

被引:0
|
作者
Chouhaïd Souissi
机构
[1] University of Sfax,Department of Mathematics, Faculty of Sciences of Sfax
关键词
Nehari manifold; Critical point; Fractional (; , ; )-laplacian system; Variational; Primary 35R11; 35J25; Secondary 35J20; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence of solutions for the fractional (p, q)-laplacian system (-Δ)psu=λb(x)|u|γ-2u+αα+βa(x)|u|α-2u|v|βinΩ,(-Δ)qlv=νc(x)|v|γ-2v+βα+βa(x)|u|α|v|β-2vinΩ,v=u=0inRN\Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} (-\Delta )_p^su &{} =\lambda b(x)|u|^{\gamma -2}u +\displaystyle \frac{\alpha }{\alpha +\beta } a(x)|u|^{\alpha -2}u |v |^\beta &{}in&{} \Omega , \\ (-\Delta )_q^lv &{} =\nu c(x)|v|^{\gamma -2}v + \displaystyle \frac{\beta }{\alpha +\beta }a(x)|u|^\alpha |v |^{\beta -2} v &{} in &{} \Omega , \\ v= u &{} =0 &{} in &{} {\mathbb {R}}^N\setminus \Omega . \end{array}\right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded set of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1 $$\end{document}-boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^s$$\end{document} and (-Δ)ql\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_q^l$$\end{document} are respectively the s-fractional p-laplacian and the l-fractional q-laplacian operators for l,s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l,s\in (0,1)$$\end{document}, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} are real parameters, a,b,c:Ω→Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b,c:\Omega \rightarrow \Omega $$\end{document} are appropriate functions and α,β,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta ,p$$\end{document} and q are reals satisfying adequate hypotheses.
引用
收藏
页码:231 / 253
页数:22
相关论文
共 50 条
  • [1] On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains
    Souissi, Chouhaid
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 231 - 253
  • [2] Existence of solutions for critical fractional p&q-Laplacian system
    Chen, Wenjing
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) : 626 - 641
  • [3] Existence and multiplicity results for the fractional Laplacian in bounded domains
    Mugnai, Dimitri
    Pagliardini, Dayana
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (02) : 111 - 124
  • [4] Fractional Laplacian in bounded domains
    Zoia, A.
    Rosso, A.
    Kardar, M.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [5] Global existence and asymptotic behavior of solutions to fractional (p, q)-Laplacian equations
    Li, Chunyi
    Song, Chaoqun
    Quan, LiYan
    Xiang, Jianhao
    Xiang, Mingqi
    ASYMPTOTIC ANALYSIS, 2022, 129 (3-4) : 321 - 338
  • [6] Existence of solutions for a q-fractional p-Laplacian SIR model
    Zinihi, Achraf
    Ammi, Moulay Rchid Sidi
    Bachir, Ahmed
    Debnath, Pradip
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [7] Existence and Non-existence of Solutions for a (p, q)-Laplacian Steklov System
    Oubalhaj, Youness
    Karim, Belhadj
    Zerouali, Abdellah
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [8] Existence and multiplicity of solutions for fractional Laplacian system
    Chen, Wenjing
    Gui, Yuyan
    APPLICABLE ANALYSIS, 2021, 100 (06) : 1327 - 1350
  • [9] Existence of positive solutions for (p(x), q(x)) Laplacian system
    Ala, Samira
    Afrouzi, Ghasem Alizadeh
    Niknam, Asadollah
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (02): : 153 - 162
  • [10] Existence of Nonnegative Solutions for a Class of Systems Involving Fractional (p, q)-Laplacian Operators
    Fu, Yougqiang
    Li, Houwang
    Pucci, Patrizia
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2018, 39 (02) : 357 - 372