On the finite basis problem for the variety generated by all n-element semigroups

被引:0
|
作者
Jian Rong Li
Wen Ting Zhang
Yan Feng Luo
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Key Laboratory of Applied Mathematics and Complex Systems,undefined
来源
Algebra universalis | 2015年 / 73卷
关键词
Primary: 20M07; Secondary: 08B05; finite basis problem; semigroup varieties; finite semigroups;
D O I
暂无
中图分类号
学科分类号
摘要
Let n be a positive integer and Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{n}}$$\end{document} the variety generated by all semigroups of order n. It was shown by Volkov that Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{n}}$$\end{document} is non-finitely based for each n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 5}$$\end{document} . It was shown by Luo and Zhang that S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{3}}$$\end{document} is finitely based. It is easy to show that the varieties S1,S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{1}, \mathbf{S}_{2}}$$\end{document} are finitely based. However, the finite basis problem for S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{4}}$$\end{document} had been open for more than twenty years. In this paper, we solve this problem by showing that the variety S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{4}}$$\end{document} is finitely based. Moreover, we give an explicit finite basis for S4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{S}_{4}}$$\end{document} .
引用
收藏
页码:225 / 248
页数:23
相关论文
共 41 条