Regular Fractional Differential Equations in the Sobolev Space

被引:0
|
作者
Ekin Ugurlu
Dumitru Baleanu
Kenan Tas
机构
[1] Cankaya University,Department of Mathematics, Faculty of Art and Sciences
[2] Magurele-Bucharest,Institute of Space Sciences
来源
Fractional Calculus and Applied Analysis | 2017年 / 20卷
关键词
Primary 46E35; 34K37; Secondary 15A63; 34B05; Sobolev space; fractional calculus; symmetric operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper regular fractional Sturm-Liouville boundary value problems are considered. In particular, new inner products are described in the Sobolev space and a symmetric operator is established in this space.
引用
收藏
页码:810 / 817
页数:7
相关论文
共 50 条
  • [1] REGULAR FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SOBOLEV SPACE
    Ugurlu, Ekin
    Baleanu, Dumitru
    Tas, Kenan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) : 810 - 817
  • [2] On a class of fractional differential equations in a Sobolev space
    Mophou, Gisele. M.
    N'Guerekata, Gaston M.
    APPLICABLE ANALYSIS, 2012, 91 (01) : 15 - 34
  • [3] The existence theory of solution in Sobolev space for fractional differential equations
    Sheng, Ying
    Zhang, Tie
    APPLIED MATHEMATICS LETTERS, 2024, 149
  • [4] Nonlinear fractional differential equations of Sobolev type
    Alsaedi, Ahmed
    Alhothuali, Mohammed S.
    Ahmad, Bashir
    Kerbal, Sebti
    Kirane, Mokhtar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (13) : 2009 - 2016
  • [5] A SOBOLEV SPACE THEORY FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH TIME-FRACTIONAL DERIVATIVES
    Kim, Ildoo
    Kim, Kyeong-Hun
    Lim, Sungbin
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2087 - 2139
  • [6] Fractional differential equations of Sobolev type with sectorial operators
    Chang, Yong-Kui
    Ponce, Rodrigo
    Rueda, Silvia
    SEMIGROUP FORUM, 2019, 99 (03) : 591 - 606
  • [7] Fractional differential equations of Sobolev type with sectorial operators
    Yong-Kui Chang
    Rodrigo Ponce
    Silvia Rueda
    Semigroup Forum, 2019, 99 : 591 - 606
  • [8] DIFFERENTIAL ELECTROMAGNETIC EQUATIONS IN FRACTIONAL SPACE
    Zubair, M.
    Mughal, M. J.
    Naqvi, Q. A.
    Rizvi, A. A.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 114 : 255 - 269
  • [9] Existence and Uniqueness Results of Fractional Differential Inclusions and Equations in Sobolev Fractional Spaces
    Meftah, Safia
    Hadjadj, Elhabib
    Biomy, Mohamad
    Yazid, Fares
    AXIOMS, 2023, 12 (11)
  • [10] BELTRAMI EQUATIONS WITH COEFFICIENT IN THE FRACTIONAL SOBOLEV SPACE Wθ,2/θ
    Baison, Antonio L.
    Clop, Albert
    Orobitg, Joan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 139 - 149