Biquaternionic Treatment of Inhomogeneous Time-Harmonic Maxwell’s Equations Over Unbounded Domains

被引:0
|
作者
Briceyda B. Delgado
Vladislav V. Kravchenko
机构
[1] Universidad Autónoma de Aguascalientes,Departamento de Matemáticas y Física
[2] Unidad Querétaro,Departamento de Matemáticas, Cinvestav
来源
Advances in Applied Clifford Algebras | 2023年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the inhomogeneous equation curlw→+λw→=g→,λ∈C,λ≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {curl}}\vec {w}+\lambda \vec {w}=\vec {g},\,\lambda \in {\mathbb {C}},\,\lambda \ne 0$$\end{document} over unbounded domains in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{3}$$\end{document}, with g→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {g}$$\end{document} being an integrable function whose divergence is also integrable. Most of the results rely heavily on the “good enough” behavior near infinity of the λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} Teodorescu transform, which is a classical integral operator of Clifford analysis. Some applications to inhomogeneous time-harmonic Maxwell equations are developed. Moreover, we provide necessary and sufficient conditions to guarantee that the electromagnetic fields constructed in this work satisfy the usual Silver–Müller radiation conditions. We conclude our work by showing that a particular case of our general solution of the inhomogeneous time-harmonic Maxwell equations coincide with the integral representation generated by the dyadic Green’s function.
引用
收藏
相关论文
共 50 条
  • [1] Biquaternionic Treatment of Inhomogeneous Time-Harmonic Maxwell's Equations Over Unbounded Domains
    Delgado, Briceyda B. B.
    Kravchenko, Vladislav V. V.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (03)
  • [2] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [3] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [4] Heterogeneous time-harmonic Maxwell equations in bidimensional domains
    Rodríguez, AA
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 753 - 758
  • [5] A non-overlapping domain decomposition for low-frequency time-harmonic Maxwell's equations in unbounded domains
    Liu, Yang
    Hu, Qiya
    Yu, Dehao
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 28 (04) : 355 - 382
  • [6] A non-overlapping domain decomposition for low-frequency time-harmonic Maxwell’s equations in unbounded domains
    Yang Liu
    Qiya Hu
    Dehao Yu
    Advances in Computational Mathematics, 2008, 28 : 355 - 382
  • [7] Time-Harmonic Maxwell’s Equations in Periodic Waveguides
    A. Kirsch
    B. Schweizer
    Archive for Rational Mechanics and Analysis, 2025, 249 (3)
  • [8] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [9] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [10] BOUNDARY INTEGRAL REPRESENTATION FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Yas'ko, M.
    2008 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, 2008, : 343 - 345