Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body

被引:0
|
作者
Paul Deuring
Giovanni P. Galdi
机构
[1] Univ. Littoral Côte d’Opale,EA 2797
[2] University of Pittsburgh, LMPA
关键词
Vorticity; Weak Solution; Fundamental Solution; Representation Formula; Exterior Domain;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the flow of a Navier–Stokes liquid past a body rotating with a prescribed constant angular velocity, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document}, and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every “weak” solution corresponding to data of arbitrary “size” (Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633–654, 1971) and Babenko and Vasil’ev (J Appl Math Mech 37:651–665, 1973) obtained in the case ω=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega=0}$$\end{document}.
引用
收藏
页码:183 / 213
页数:30
相关论文
共 50 条