Hypersingular integrals have appeared as effective tools for inversion of multidimensional potential-type operators such as Riesz, Bessel, Flett, parabolic potentials, etc. They represent (at least formally) fractional powers of suitable differential operators. In this paper the family of the so-called “truncated hypersingular integral operators” Dεαf\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbf{D}_{\varepsilon }^{\alpha }f$\end{document} is introduced, that is generated by the modified Poisson semigroup and associated with the Flett potentials Fαφ=(E+−Δ)−αφ (0<α<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$0<\alpha <\infty $\end{document}, φ∈Lp(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\varphi \in L_{p}(\mathbb{R}^{n})$\end{document}). Then the relationship between the order of “Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L_{p}$\end{document}-smoothness” of a function f and the “rate of Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L_{p}$\end{document}-convergence” of the families DεαFαf\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbf{D}_{\varepsilon }^{\alpha } \mathcal{F}^{\alpha }f$\end{document} to the function f as ε→0+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\varepsilon \rightarrow 0^{+}$\end{document} is also obtained.