Global regularity of 2D generalized MHD equations with magnetic diffusion

被引:0
作者
Quansen Jiu
Jiefeng Zhao
机构
[1] Capital Normal University,School of Mathematical Sciences and Beijing Center of Mathematics and Information Sciences
[2] Capital Normal University,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
35Q35; 35Q60; MHD equations; Global existence; Uniqueness; Magnetic diffusion; Besov space;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the global regularity of the 2D (two-dimensional) generalized magnetohydrodynamic equations with only magnetic diffusion Λ2βb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda^{2\beta} b}$$\end{document} . It is proved that when β > 1 there exists a unique global regular solution for this equations. The obtained result improves the previous known ones which require that β>32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta > \frac{3}{2}}$$\end{document} . With help of Fourier analysis, Besov spaces and singular integral theory, some delicate estimates on the vorticity ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document} and the current j are established to prove our main result.
引用
收藏
页码:677 / 687
页数:10
相关论文
共 28 条
  • [1] Caflisch R.E.(1997)Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD Commun. Math. Phys. 184 443-455
  • [2] Klapper I.(2003)Global clssical solutions for MHD system J. Math. Fluid Mech. 5 70-91
  • [3] Steele G.(2014)The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion SIAM J. Math. Anal. 46 588-602
  • [4] Casella E.(2006)Mathematical results related to a two-dimensional magneto-hydrodynamic equations Acta Math. Sci. Ser. B English. Ed. 26 744-756
  • [5] Secchi P.(2014)A remark on global regularity of 2D generalized magnetohydrodynamic equations J. Math. Anal. Appl. 412 478-484
  • [6] Trebeschi P.(1989)Weak and classical solutions of the two-dimensional magnetohydrodynamic equations Tohoku Math. J. (2) 41 471-488
  • [7] Cao C.(2008)Well-posedness of the Cauchy problem for the fractional power dissipative equations Nonlinear Anal. 68 461-484
  • [8] Wu J.(2013)On global regularity of 2D generalized magnetodydrodynamics equations J. Differ. Equ. 254 4194-4216
  • [9] Yuan B.(2001)Dissipative quasi-geostrophic equations with Electron J. Differ. Equ. 2001 1-13
  • [10] Jiu Q.(2003) data J. Differ. Equ. 195 284-312