Weighted Non-Trivial Multiply Intersecting Families

被引:0
|
作者
Peter Frankl
Norihide Tokushige
机构
[1] ER 175 Combinatoire,CNRS
[2] Ryukyu University,College of Education
来源
Combinatorica | 2006年 / 26卷
关键词
05D05;
D O I
暂无
中图分类号
学科分类号
摘要
Let n and r be positive integers. Suppose that a family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{F}}} \subset 2^{{{\left[ n \right]}}} $$\end{document} satisfies F1∩···∩Fr ≠∅ for all F1, . . .,Fr ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{F}}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\bigcap {_{{F \in {\user1{\mathcal{F}}}}} } }F = \emptyset $$\end{document}. We prove that there exists ε=ε(r) >0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\sum {_{{F \in {\user1{\mathcal{F}}}}} } }\omega ^{{{\left| F \right|}}} {\left( {1 - \omega } \right)}^{{n - {\left| F \right|}}} \leqslant \omega ^{r} {\left( {r + 1 - r\omega } \right)} $$\end{document} holds for 1/2≤w≤1/2+ε if r≥13.
引用
收藏
页码:37 / 46
页数:9
相关论文
共 50 条
  • [1] Weighted non-trivial multiply intersecting families
    Frankl, P
    Tokushige, N
    COMBINATORICA, 2006, 26 (01) : 37 - 46
  • [2] Non-trivial d-wise intersecting families
    O'Neill, Jason
    Verstraete, Jacques
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [3] Non-trivial t-intersecting separated families
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    Yang, Zhe
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 124 - 137
  • [4] Non-trivial r-wise intersecting families
    P. Frankl
    J. Wang
    Acta Mathematica Hungarica, 2023, 169 : 510 - 523
  • [5] NON-TRIVIAL r-WISE INTERSECTING FAMILIES
    Frankl, P.
    Wang, J.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (02) : 510 - 523
  • [6] Non-trivial intersecting uniform sub-families of hereditary families
    Borg, Peter
    DISCRETE MATHEMATICS, 2013, 313 (17) : 1754 - 1761
  • [7] Non-trivial 3-wise intersecting uniform families
    Tokushige, Norihide
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [8] Weighted multiply intersecting families
    Frankl, P
    Tokushige, N
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (03) : 287 - 291
  • [9] On the Maximum of the Sum of the Sizes of Non-trivial Cross-Intersecting Families
    Frankl, P.
    COMBINATORICA, 2024, 44 (01) : 15 - 35
  • [10] Large non-trivial t-intersecting families of signed sets
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 32 - 48