Hyper-para-Kähler Lie algebras with abelian complex structures and their classification up to dimension 8

被引:0
|
作者
Ignacio Bajo
Esperanza Sanmartín
机构
[1] E.I. Telecomunicación,Depto. Matemática Aplicada II
[2] Facultad de CC.EE,Depto. Matemáticas
来源
关键词
Hyper-para-Kähler manifold; Abelian (para)complex structure; Symplectic left-symmetric algebra; 53C55; 53D05; 17B30;
D O I
暂无
中图分类号
学科分类号
摘要
Hyper-para-Kähler structures on Lie algebras where the complex structure is abelian are studied. We show that there is a one-to-one correspondence between such hyper-para-Kähler Lie algebras and complex commutative (hence, associative) symplectic left-symmetric algebras admitting a semilinear map Ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_s$$\end{document} verifying certain algebraic properties. Such equivalence allows us to give a complete classification, up to holomorphic isomorphism, of pairs (g,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathfrak g},J)$$\end{document} of 8-dimensional Lie algebras endowed with abelian complex structures which admit hyper-para-Kähler structures.
引用
收藏
页码:543 / 559
页数:16
相关论文
共 23 条
  • [1] Hyper-para-Kahler Lie algebras with abelian complex structures and their classification up to dimension 8
    Bajo, Ignacio
    Sanmartin, Esperanza
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (04) : 543 - 559
  • [2] PARA-KÄHLER AND PSEUDO-KÄHLER STRUCTURES ON LIE-YAMAGUTI ALGEBRAS
    Zhao, Jia
    Feng, Yuqin
    Qiao, And Y.U.
    arXiv, 2023,
  • [3] Anti-abelian nearly Kähler structures on nilpotent Lie algebras
    E. Peyghan
    L. Nourmohammadifar
    Periodica Mathematica Hungarica, 2018, 77 : 291 - 317
  • [4] Classification of abelian complex structures on 6-dimensional Lie algebras
    Andrada, A.
    Barberis, M. L.
    Dotti, I.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 83 : 232 - 255
  • [5] Abelian para-Kahler structures on Lie algebras
    Bajo, Ignacio
    Benayadi, Said
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) : 160 - 173
  • [6] Abelian complex structures on solvable lie algebras
    Barberis, ML
    Dotti, I
    JOURNAL OF LIE THEORY, 2004, 14 (01) : 25 - 34
  • [7] The classification of two step nilpotent complex Lie algebras of dimension 8
    Zaili Yan
    Shaoqiang Deng
    Czechoslovak Mathematical Journal, 2013, 63 : 847 - 863
  • [8] The classification of two step nilpotent complex Lie algebras of dimension 8
    Yan, Zaili
    Deng, Shaoqiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 847 - 863
  • [9] INDEFINITE HYPERKÄHLER METRICS ON LIE GROUPS WITH ABELIAN COMPLEX STRUCTURES
    IGNACIO BAJO
    ESPERANZA SANMARTÍN
    Transformation Groups, 2020, 25 : 647 - 666
  • [10] Pseudo-Kahler Lie algebras with Abelian complex structures
    Bajo, Ignacio
    Sanmartin, Esperanza
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (46)