Let R be the ring of integers in a number field F, Λ any R-order in a semisimple F-algebra Σ, α an R-automorphism of Λ. Denote the extension of α to Σ also by α. Let Λα[T] (resp. Σα[T] be the α-twisted Laurent series ring over Λ (resp. Σ). In this paper we prove that (i) There exist isomorphisms \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{Q}\otimes K_{n}(\Lambda_{\alpha}[T])\simeq \mathbb{Q}\otimes G_{n}(\Lambda_{\alpha}[T])\simeq \mathbb{Q}\otimes K_{n}(\Sigma_{\alpha}[T])$\end{document}) for all n ≥ 1. (ii) \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$G^{\rm pr}_n(\Lambda_{\alpha}[T],\hat{Z}_l)\simeq G_n(\Lambda_{\alpha}[T],\hat{Z}_l)$\end{document}is an l-complete profinite Abelian group for all n≥2. (iii)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\rm div} G^{\rm pr}_n(\Lambda_{\alpha}[T],\hat{Z}_l)=0$\end{document}for all n≥2. (iv)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$G_n(\Lambda_{\alpha}[T]) \longrightarrow G^{\rm pr}_n(\Lambda_{\alpha}[T],\hat{Z}_l)$\end{document}is injective with uniquely l-divisible cokernel (for all n≥2). (v) K–1(Λ), K–1(Λα[T]) are finitely generated Abelian groups.