Refined Pointwise Estimates for Solutions to the 1D Barotropic Compressible Navier–Stokes Equations: An Application to the Long-Time Behavior of a Point Mass

被引:0
|
作者
Kai Koike
机构
[1] Tokyo Institute of Technology,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the long-time behavior of a point mass moving in a one-dimensional viscous compressible fluid. The author previously showed that the velocity of the point mass V(t) satisfies a decay estimate V(t)=O(t-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(t)=O(t^{-3/2})$$\end{document} (Koike in J. Differ. Equ. 271:356–413, 2021). However, whether this decay estimate is optimal or not was not completely understood. In this paper, we answer this question by giving a simple necessary and sufficient condition for the validity of a lower bound of the form C-1t-3/2≤|V(t)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{-1}t^{-3/2}\le |V(t)|$$\end{document} for large t (C>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C>1$$\end{document} is a constant independent of t). This is achieved by refining the previously obtained pointwise estimates of solutions. We introduce inter-diffusion waves that, together with the classical diffusion waves, give an improved approximation of the fluid behavior around the point mass; this then leads to a sharper understanding of the long-time behavior of the point mass.
引用
收藏
相关论文
共 50 条