Some Inequalities Involving Perimeter and Torsional Rigidity

被引:0
|
作者
Luca Briani
Giuseppe Buttazzo
Francesca Prinari
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Università di Ferrara,Dipartimento di Matematica e Informatica
来源
关键词
Torsional rigidity; Shape optimization; Perimeter; Convex domains; 49Q10; 49J45; 49R05; 35P15; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider shape functionals of the form Fq(Ω)=P(Ω)Tq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )=P(\Omega )T^q(\Omega )$$\end{document} on the class of open sets of prescribed Lebesgue measure. Here q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} is fixed, P(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\Omega )$$\end{document} denotes the perimeter of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and T(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\Omega )$$\end{document} is the torsional rigidity of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The minimization and maximization of Fq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )$$\end{document} is considered on various classes of admissible domains Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}: in the class Aall\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{all}$$\end{document} of all domains, in the class Aconvex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{convex}$$\end{document} of convex domains, and in the class Athin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{thin}$$\end{document} of thin domains.
引用
收藏
页码:2727 / 2741
页数:14
相关论文
共 50 条
  • [1] Some Inequalities Involving Perimeter and Torsional Rigidity
    Briani, Luca
    Buttazzo, Giuseppe
    Prinari, Francesca
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2727 - 2741
  • [2] On some variational problems involving capacity, torsional rigidity, perimeter and measure
    van den Berg, Michiel
    Malchiodi, Andrea
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (04) : 961 - 974
  • [3] On functionals involving the torsional rigidity related to some classes of nonlinear operators
    Della Pietra, Francesco
    Gavitone, Nunzia
    Lo Bianco, Serena Guarino
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) : 6424 - 6442
  • [4] A Generalization of the Polia–Szego and Makai Inequalities for Torsional Rigidity
    L. I. Gafiyatullina
    R. G. Salakhudinov
    Russian Mathematics, 2021, 65 : 76 - 80
  • [6] A Generalization of the Polia-Szego and Makai Inequalities for Torsional Rigidity
    Gafiyatullina, L., I
    Salakhudinov, R. G.
    RUSSIAN MATHEMATICS, 2021, 65 (11) : 76 - 80
  • [7] Anisotropic isoperimetric inequalities involving boundary momentum, perimeter and volume
    Paoli, Gloria
    Trani, Leonardo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 229 - 246
  • [8] MAXIMAL TORSIONAL RIGIDITY - SOME QUALITATIVE REMARKS
    TAHRAOUI, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 971 - 994
  • [9] Some estimates for the torsional rigidity of composite rods
    Crasta, Graziano
    Fragala, Ilaria
    Gazzola, Filippo
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (03) : 242 - 255
  • [10] Optimization Problems Involving the First Dirichlet Eigenvalue and the Torsional Rigidity
    van den Berg, Michiel
    Buttazzo, Giuseppe
    Velichkov, Bozhidar
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 19 - 41