A note on non-symmetric flow: surface shrinking in mutually orthogonal directions

被引:0
|
作者
J. H. Merkin
Y. Y. Lok
I. Pop
机构
[1] Universiti Sains Malaysia,Mathematics Division, School of Distance Education
[2] University of Leeds,Department of Applied Mathematics
[3] Babeş-Bolyai University,Department of Mathematics
来源
Meccanica | 2021年 / 56卷
关键词
Non-symmetric flow; Permeable shrinking surface; Multiple solutions; Numerical solutions; Asymptotic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we extend the problem treated in (Lok, Math Modelling Anal 24:617–634 (2019)) to the case of permeable surface which is shrinking in mutually orthogonal directions. Both numerical and asymptotic solutions are obtained for two important governing parameters, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} the shrinking rate and S characterizing the fluid transfer through the boundary. In this problem, a restriction on S is required for a solution to exist. This contrasts with the problem in (Lok, Math Modelling Anal 24:617–634 (2019)) where no restriction on S is needed. Numerical solutions show that for a fixed value of S, two critical points γc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _c$$\end{document} are observed for S>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S > 2$$\end{document}. Conversely, two critical points Sc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_c$$\end{document} are found for a given value of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} when S>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S > 2$$\end{document}. A discussion on the nonexistence of solution for S=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = 2$$\end{document} is given and asymptotic solutions for S large and (S-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S-2)$$\end{document} small are also presented.
引用
收藏
页码:1727 / 1737
页数:10
相关论文
共 50 条
  • [1] A note on non-symmetric flow: surface shrinking in mutually orthogonal directions
    Merkin, J. H.
    Lok, Y. Y.
    Pop, I.
    MECCANICA, 2021, 56 (07) : 1727 - 1737
  • [2] Non-Symmetric Flow over a Stretching/Shrinking Surface with Mass Transfer
    Lok, Yian Yian
    Merkin, John H.
    Pop, Ioan
    MATHEMATICAL MODELLING AND ANALYSIS, 2019, 24 (04) : 617 - 634
  • [3] On Non-Symmetric Orthogonal Spline Wavelets
    Fukuda, N.
    Kinoshita, T.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (03) : 319 - 341
  • [4] A note on the cross Gramian for non-symmetric systems
    Himpe, Christian
    Ohlberger, Mario
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2016, 4 (01): : 199 - 208
  • [5] Non-symmetric conical supersonic flow
    Chen, SX
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL 1, 1999, 129 : 149 - 158
  • [6] MATRIX POLYNOMIALS ORTHOGONAL WITH RESPECT TO A NON-SYMMETRIC MATRIX OF MEASURES
    Zygmunt, Marcin J.
    OPUSCULA MATHEMATICA, 2016, 36 (03) : 409 - 423
  • [8] A note on a system with radiation boundary conditions with non-symmetric linearisation
    Amster, P.
    Kuna, M. P.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (04): : 565 - 577
  • [9] A note on simultaneous preconditioning and symmetrization of non-symmetric linear systems
    Ghoussoub, Nassif
    Moradifam, Amir
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) : 343 - 349
  • [10] A note on a system with radiation boundary conditions with non-symmetric linearisation
    P. Amster
    M. P. Kuna
    Monatshefte für Mathematik, 2018, 186 : 565 - 577