Publisher Correction: The triumphs and limitations of computational methods for scRNA-seq

被引:0
|
作者
Peter V. Kharchenko
机构
[1] Harvard Medical School,Department of Biomedical Informatics
关键词
D O I
10.1038/s41592-021-01223-2
中图分类号
学科分类号
摘要
引用
收藏
页码:835 / 835
相关论文
共 50 条
  • [1] The triumphs and limitations of computational methods for scRNA-seq (Jun, 10.1038/s41592-021-01171-x, 2021)
    Kharchenko, Peter V.
    NATURE METHODS, 2021, 18 (07) : 835 - 835
  • [2] Computational Methods for scRNA-seq Analysis at Cell Level
    Zhu, Tinghao
    Zhou, Jinfei
    Zhang, Le
    Cao, Yang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1168 - 1173
  • [3] Computational approaches for interpreting scRNA-seq data
    Rostom, Raghd
    Svensson, Valentine
    Teichmann, Sarah A.
    Kar, Gozde
    FEBS LETTERS, 2017, 591 (15) : 2213 - 2225
  • [4] Simulating scRNA-seq for benchmarks
    Michael Fletcher
    Nature Genetics, 2023, 55 : 904 - 904
  • [5] scRNA-seq: oh, the joys
    Marx, Vivien
    NATURE METHODS, 2024, 21 (05) : 750 - 753
  • [6] Simulating scRNA-seq for benchmarks
    Fletcher, Michael
    NATURE GENETICS, 2023, 55 (06) : 904 - 904
  • [7] Automated methods for cell type annotation on scRNA-seq data
    Pasquini, Giovanni
    Arias, Jesus Eduardo Rojo
    Schaefer, Patrick
    Busskamp, Volker
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 961 - 969
  • [8] Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?
    Liu, Yue
    Zhang, Junfeng
    Wang, Shulin
    Zeng, Xiangxiang
    Zhang, Wei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [9] ScRNA-seq and ST-seq in liver research
    He, Jia
    Deng, Chengxiang
    Krall, Leonard
    Shan, Zhao
    CELL REGENERATION, 2023, 12 (01)
  • [10] Improved tool for scRNA-seq analysis
    Fletcher, Michael
    NATURE GENETICS, 2024, 56 (12) : 2589 - 2589