We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to q-deformed W-algebras and lattice Poisson algebras. We introduce the notion of Adler type pseudodifference operators and apply them to integrability of differential-difference Hamiltonian equations.
机构:
Yaroslavl State University named after P. G. Demidov, ul. Sovetskaya 14, Yaroslavl
Yaroslavl State University named after P. G. Demidov, ul. Sovetskaya 14, YaroslavlYaroslavl State University named after P. G. Demidov, ul. Sovetskaya 14, Yaroslavl
Kashchenko I.S.
Kashchenko S.A.
论文数: 0引用数: 0
h-index: 0
机构:
Yaroslavl State University named after P. G. Demidov, ul. Sovetskaya 14, Yaroslavl
Yaroslavl State University named after P. G. Demidov, ul. Sovetskaya 14, Yaroslavl
National Research Nuclear University “MIFI”, Kashirskoe sh. 31, MoscowYaroslavl State University named after P. G. Demidov, ul. Sovetskaya 14, Yaroslavl
机构:
Univ New England, Dept Math Stat & Comp Sci, Armidale, NSW 2351, AustraliaUniv New England, Dept Math Stat & Comp Sci, Armidale, NSW 2351, Australia
机构:
Dept. of Math., Stat. and Comp. Sci., University of New England, Armidale, NSW 2351, AustraliaDept. of Math., Stat. and Comp. Sci., University of New England, Armidale, NSW 2351, Australia
Jiang, Zhuhan
Physics Letters, Section A: General, Atomic and Solid State Physics,
1998,
240
(03):
: 137
-
143