Invariants preserving schemes based on explicit Runge–Kutta methods

被引:0
|
作者
H. Kojima
机构
[1] The University of Tokyo,Department of Mathematical Informatics, Graduate School of Information Science and Technology
来源
BIT Numerical Mathematics | 2016年 / 56卷
关键词
Initial value problems; Perturbed collocation methods ; Numerical geometric integration; Projection methods; Explicit Runge–Kutta methods; 65L05; 65L06;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical integration of ordinary differential equations with some invariants is considered. For such a purpose, certain projection methods have proved its high accuracy and efficiency. Unfortunately, however, sometimes they can exhibit instability. In this paper, a new, highly efficient projection method is proposed based on explicit Runge–Kutta methods. The key there is to employ the idea of the perturbed collocation method, which gives a unified way to incorporate scheme parameters for projection. Numerical experiments confirm the stability of the proposed method.
引用
收藏
页码:1317 / 1337
页数:20
相关论文
共 50 条
  • [1] Invariants preserving schemes based on explicit Runge-Kutta methods
    Kojima, H.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1317 - 1337
  • [2] On the preservation of invariants by explicit Runge-Kutta methods
    Calvo, M.
    Hernandez-Abreu, D.
    Montijano, J. I.
    Randez, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 868 - 885
  • [3] Preserving algebraic invariants with Runge-Kutta methods
    Iserles, A
    Zanna, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 69 - 81
  • [4] EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS
    Bresten, Christopher
    Gottlieb, Sigal
    Grant, Zachary
    Higgs, Daniel
    Ketcheson, David I.
    Nemeth, Adrian
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 747 - 769
  • [5] Pseudo-energy-preserving explicit Runge-Kutta methods
    de Leon, Gabriel A. Barrios
    Ketcheson, David I.
    Ranocha, Hendrik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (02) : 729 - 748
  • [6] Entropy Production by Explicit Runge–Kutta Schemes
    Carlos Lozano
    Journal of Scientific Computing, 2018, 76 : 521 - 564
  • [7] A MODIFIED VERSION OF EXPLICIT RUNGE-KUTTA METHODS FOR ENERGY-PRESERVING
    Hu, Guang-Da
    KYBERNETIKA, 2014, 50 (05) : 838 - 847
  • [8] Embedded pairs for optimal explicit strong stability preserving Runge–Kutta methods
    Fekete, Imre
    Conde, Sidafa
    Shadid, John N.
    Journal of Computational and Applied Mathematics, 2022, 412
  • [9] Entropy Production by Explicit Runge-Kutta Schemes
    Lozano, Carlos
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 521 - 564
  • [10] A class of new explicit Runge-Kutta schemes
    Wang, B
    Ji, ZZ
    Zeng, QC
    PROGRESS IN NATURAL SCIENCE, 1996, 6 (02) : 195 - 205