Optimality Properties of Galerkin and Petrov–Galerkin Methods for Linear Matrix Equations

被引:0
|
作者
Davide Palitta
Valeria Simoncini
机构
[1] Max Planck Institute for Dynamics of Complex Technical Systems,Research Group Computational Methods in Systems and Control Theory (CSC)
[2] Alma Mater Studiorum Università di Bologna,Dipartimento di Matematica
[3] IMATI-CNR,undefined
来源
关键词
Linear matrix equations; Large scale equations; Sylvester equation; 65F10; 65F30; 15A06;
D O I
暂无
中图分类号
学科分类号
摘要
Galerkin and Petrov–Galerkin methods are some of the most successful solution procedures in numerical analysis. Their popularity is mainly due to the optimality properties of their approximate solution. We show that these features carry over to the (Petrov-) Galerkin methods applied for the solution of linear matrix equations. Some novel considerations about the use of Galerkin and Petrov–Galerkin schemes in the numerical treatment of general linear matrix equations are expounded and the use of constrained minimization techniques in the Petrov–Galerkin framework is proposed.
引用
收藏
页码:791 / 807
页数:16
相关论文
共 50 条
  • [1] Optimality Properties of Galerkin and Petrov-Galerkin Methods for Linear Matrix Equations
    Palitta, Davide
    Simoncini, Valeria
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 791 - 807
  • [2] The petrov-galerkin and iterated petrov-galerkin methods for second-kind integral equations
    Department of Scientific Computation, Zhongshan University, Guangzhou 510275, China
    不详
    SIAM J Numer Anal, 1 (406-434):
  • [3] The Petrov-Galerkin and iterated Petrov-Galerkin methods for second-kind integral equations
    Chen, ZY
    Xu, YS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 406 - 434
  • [4] Petrov-Galerkin methods for linear Volterra integro-differential equations
    Lin, T
    Lin, YP
    Rao, M
    Zhang, SH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) : 937 - 963
  • [5] A CLASS OF PETROV–GALERKIN KRYLOV METHODS FOR ALGEBRAIC RICCATI EQUATIONS∗
    Bertram, Christian
    Faßbender, Heike
    Electronic Transactions on Numerical Analysis, 2024, 62 : 138 - 162
  • [6] A construction of multiscale bases for Petrov–Galerkin methods for integral equations
    Min Huang
    Advances in Computational Mathematics, 2006, 25 : 7 - 22
  • [7] Discontinuous Galerkin and Petrov Galerkin methods for compressible viscous flows
    Wang, Li
    Anderson, W. Kyle
    Erwin, J. Taylor
    Kapadia, Sagar
    COMPUTERS & FLUIDS, 2014, 100 : 13 - 29
  • [8] Nonlinear discontinuous Petrov–Galerkin methods
    C. Carstensen
    P. Bringmann
    F. Hellwig
    P. Wriggers
    Numerische Mathematik, 2018, 139 : 529 - 561
  • [9] Discrete Wavelet Petrov–Galerkin Methods
    Zhongying Chen
    Charles A. Micchelli
    Yuesheng Xu
    Advances in Computational Mathematics, 2002, 16 : 1 - 28
  • [10] On multiscale methods in Petrov–Galerkin formulation
    Daniel Elfverson
    Victor Ginting
    Patrick Henning
    Numerische Mathematik, 2015, 131 : 643 - 682