Non-abelian Sylow subgroups of finite groups of even order

被引:0
|
作者
Naoki Chigira
Nobuo Iiyori
Hiroyoshi Yamaki
机构
[1] Department of Mathematical Sciences,
[2] Muroran Institute of Technology,undefined
[3] Hokkaido 050-8585 Japan (e-mail: chigira@muroran-it.ac.jp),undefined
[4] Department of Mathematics,undefined
[5] Yamaguchi University,undefined
[6] Yamaguchi 753-8513 Japan¶(e-mail: iiyori@po.yb.cc.yamaguchi-u.ac.jp),undefined
[7] Department of Mathematics,undefined
[8] Kumamoto University,undefined
[9] Kumamoto 860-8555 Japan¶(e-mail: yamaki@gpo.kumamoto-u.ac.jp),undefined
来源
Inventiones mathematicae | 2000年 / 139卷
关键词
Finite Group; Sylow Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:525 / 539
页数:14
相关论文
共 50 条
  • [1] Non-abelian Sylow subgroups of finite groups of even order
    Chigira, N
    Iiyori, N
    Yamaki, H
    INVENTIONES MATHEMATICAE, 2000, 139 (03) : 525 - 539
  • [2] Nonabelian Sylow subgroups of finite groups of even order
    Chigira, N
    Iiyori, N
    Yamaki, H
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 4 : 88 - 90
  • [3] GROUPS WITH NON-ABELIAN SUBGROUPS IN THE FINITE INDEX
    KURDACHENKO, LA
    PYLAEV, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1986, (07): : 14 - 15
  • [4] FINITE GROUPS WITH FEW NON-ABELIAN SUBGROUPS
    Meng, Wei
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (03) : 909 - 915
  • [5] FINITE GROUPS WHOSE SYLOW SUBGROUPS ARE ABELIAN
    BROSHI, AM
    JOURNAL OF ALGEBRA, 1971, 17 (01) : 74 - &
  • [6] RECOGNIZING ABELIAN SYLOW SUBGROUPS IN FINITE GROUPS
    Brough, Julian
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5347 - 5361
  • [7] FINITE GROUPS WITH SOME NON-ABELIAN SUBGROUPS OF NON-PRIME-POWER ORDER
    Meng, Wei
    Yao, Hailou
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (04): : 733 - 739
  • [8] Finite groups with some non-Abelian subgroups of non-prime-power order
    Wei Meng
    Hailou Yao
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 733 - 739
  • [9] ON NON-NORMAL NON-ABELIAN SUBGROUPS OF FINITE GROUPS
    Zhang, C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 659 - 663
  • [10] Finite Non-abelian p-groups All of Whose Non-abelian Proper Subgroups have Centers of the Same Order
    Zhang, Dandan
    Qu, Haipeng
    Luo, Yanfeng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025,