A two-sided estimate for the Gaussian noise stability deficit

被引:0
|
作者
Ronen Eldan
机构
[1] University of Washington,
来源
Inventiones mathematicae | 2015年 / 201卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Gaussian noise-stability of a set A⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \subset {\mathbb R}^n$$\end{document} is defined by Sρ(A)=PX∈A&Y∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{aligned} {\mathcal {S}}_\rho (A) = {\mathbb P}\left( X \in A ~ \& ~ Y \in A \right) \end{aligned}$$\end{document}where X,Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X,Y$$\end{document} are standard jointly Gaussian vectors satisfying E[XiYj]=δijρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb E}[X_i Y_j] = \delta _{ij} \rho $$\end{document}. Borell’s inequality states that for all 0<ρ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \rho < 1$$\end{document}, among all sets A⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \subset {\mathbb R}^n$$\end{document} with a given Gaussian measure, the quantity Sρ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\rho (A)$$\end{document} is maximized when A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is a half-space. We give a novel short proof of this fact, based on stochastic calculus. Moreover, we prove an almost tight, two-sided, dimension-free robustness estimate for this inequality: by introducing a new metric to measure the distance between the set A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and its corresponding half-space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} (namely the distance between the two centroids), we show that the deficit Sρ(H)-Sρ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\rho (H) - {\mathcal {S}}_\rho (A)$$\end{document} can be controlled from both below and above by essentially the same function of the distance, up to logarithmic factors. As a consequence, we also establish the conjectured exponent in the robustness estimate proven by Mossel-Neeman, which uses the total-variation distance as a metric. In the limit ρ→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \rightarrow 1$$\end{document}, we obtain an improved dimension-free robustness bound for the Gaussian isoperimetric inequality. Our estimates are also valid for a generalized version of stability where more than two correlated vectors are considered.
引用
收藏
页码:561 / 624
页数:63
相关论文
共 50 条
  • [1] A two-sided estimate for the Gaussian noise stability deficit
    Eldan, Ronen
    INVENTIONES MATHEMATICAE, 2015, 201 (02) : 561 - 624
  • [2] Two-sided estimate for the modulus of continuity of a convolution
    M. L. Gol’dman
    A. V. Malysheva
    Differential Equations, 2013, 49 : 557 - 568
  • [3] ON TWO-SIDED ESTIMATE FOR NORM OF FOURIER OPERATOR
    Shakirov, I. A.
    UFA MATHEMATICAL JOURNAL, 2018, 10 (01): : 94 - 114
  • [4] Two-sided estimate for the modulus of continuity of a convolution
    Gol'dman, M. L.
    Malysheva, A. V.
    DIFFERENTIAL EQUATIONS, 2013, 49 (05) : 557 - 568
  • [5] ON THE STABILITY OF A TWO-SIDED SWEEP ALGORITHM
    Malyshev, Alexander
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 504 - 516
  • [6] On the phase stability in two-sided multipactor
    Mostajeran, M.
    Rachti, M. Lamehi
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 615 (01): : 1 - 5
  • [7] Revisiting Two-Sided Stability Constraints
    Siala, Mohamed
    O'Sullivan, Barry
    INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING, CPAIOR 2016, 2016, 9676 : 342 - 357
  • [8] On Two-sided Length Biased Inverse Gaussian Distribution
    Simmachan, Teerawat
    Budsaba, Kamon
    Volodin, Andrei
    CHIANG MAI JOURNAL OF SCIENCE, 2018, 45 (07): : 2826 - 2837
  • [9] Stability and Bayesian Consistency in Two-Sided Markets
    Liu, Qingmin
    AMERICAN ECONOMIC REVIEW, 2020, 110 (08): : 2625 - 2666
  • [10] Constrained stability in two-sided matching markets
    Mustafa Oğuz Afacan
    Umut Mert Dur
    Social Choice and Welfare, 2020, 55 : 477 - 494